Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
a) Áp dụng tính chất ..., ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)
\(\Rightarrow x=4;y=6;z=8\)
b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )
4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất ..., ta có :
\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)
\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)
còn lại tương tự
Ta có:
\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1
y=3k+2
z=4k+3
Thay vào: x - 2y + 3z = -10
(2k+1)-2x(3k+2)+3x(4k+3)= -10
(2k+1)-(6k+4)+(12k+9)= -10
(2k-6k+12k)+(1-4+9) = -10
8k + 6 = -10
8k = -16
k = -2
=> x = 2x(-2)+1 = -3
y = 3x(-2)+2 = -4
z =4x(-2)+3 = -5
Vậy .............
Nếu đúng nhớ **** cho mk nha!
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)
Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)
=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)
=> x + y + z - 6 = -10.9 : 3 = -30
=> x + y + z = -24
Bài 1 :
a) Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)
=> xy = 4k.5k = 20k2
=> 20k2 = 80
=> k2 = 4
=> k = \(\pm\)2
Với k = 2 thì \(\hept{\begin{cases}x=4\cdot2=8\\y=5\cdot2=10\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=4\cdot\left(-2\right)=-8\\y=5\cdot\left(-2\right)=-10\end{cases}}\)
b) Ta có : \(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}\Rightarrow\frac{x^2}{16}=\frac{3y^2}{75}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{16}=\frac{3y^2}{75}=\frac{x^2-3y^2}{16-75}=\frac{-59}{-59}=1\)
=> \(\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Rightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)
Bài 2 :
a) Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y+z}{3+5+6}=\frac{56}{14}=4\)
=> \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{5}=4\\\frac{z}{6}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=12\\y=20\\z=24\end{cases}}\)
b) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{3-10+18}=\frac{-33}{11}=-3\)
=> \(\hept{\begin{cases}\frac{x}{3}=-3\\\frac{y}{5}=-3\\\frac{z}{6}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=-15\\z=-18\end{cases}}\)
c) Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=6k\end{cases}}\)
=> xyz = 3k.5k.6k = 90k3
=> 90k3 = 720
=> k3 = 8
=> k = 2
Với k = 2 thì x = 3.2 = 6,y = 5.2 = 10,z = 6.2 = 12
d) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{z^2}{36}\)
=> \(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}=\frac{x^2-4y^2+2z^2}{9-100+72}=\frac{-475}{-19}=25\)
=> x2 = 25.9 = 225 => x = \(\pm\)15
y2 = 25.25 = 625 => y = \(\pm\)25
z2 = 25.36 = 900 => z = \(\pm\)30
c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và\(2x^2+2y^2-3z^2=-100\)
đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)
\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)
\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)
mà\(2x^2+2y^2-3z^2=-100\)
thay\(6k^2+8k^2-15k^2=-100\)
\(k^2\left(6+8-15\right)=-100\)
\(k^2.\left(-1\right)=-100\)
\(k^2=100\)
\(\Rightarrow k=\pm10\)
bạn thế vào nha
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\frac{x-y+z}{10-15+12}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) mà x - y + z = -21
\(\Rightarrow\frac{-21}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow-3=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
\(\Rightarrow\hept{\begin{cases}x=-3\cdot10=-30\\y=-3\cdot15=-45\\z=-3\cdot12=-36\end{cases}}\)
Ta có :
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+2y-5}{y-1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{2+3}=\frac{x+2y-5}{5}\)
Lại có \(\frac{x+2y-5}{y-1}=\frac{x+2y-5}{5}\)
\(\Leftrightarrow\)\(y-1=5\)
\(\Leftrightarrow\)\(y=6\)
Suy ra : \(\frac{x+y}{2}=\frac{y-5}{3}\)
\(\Leftrightarrow\)\(\frac{x+6}{2}=\frac{6-5}{3}\)
\(\Leftrightarrow\)\(\frac{x+6}{2}=\frac{1}{3}\)
\(\Leftrightarrow\)\(x+6=\frac{1}{3}.2\)
\(\Leftrightarrow\)\(x+6=\frac{2}{3}\)
\(\Leftrightarrow\)\(x=\frac{2}{3}-6\)
\(\Leftrightarrow\)\(x=\frac{-16}{3}\)
Vậy \(x=\frac{-16}{3}\) và \(y=6\)
Chúc bạn học tốt ~
Ta có: \(\frac{x}{y}=1\frac{2}{5}\Leftrightarrow\frac{x}{y}=\frac{7}{5}\Leftrightarrow\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\left(k\inℝ\right)\Rightarrow\hept{\begin{cases}x=7k\\y=5k\end{cases}}\)
Thay vào ta được: \(2\left(5k\right)^2-\left(7k\right)^2=-28\)
\(\Leftrightarrow k^2=-28\) (vô lý)
=> Không tồn tại x,y thỏa mãn