K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2020

Ta có: \(\frac{x}{y}=1\frac{2}{5}\Leftrightarrow\frac{x}{y}=\frac{7}{5}\Leftrightarrow\frac{x}{7}=\frac{y}{5}\)

Đặt \(\frac{x}{7}=\frac{y}{5}=k\left(k\inℝ\right)\Rightarrow\hept{\begin{cases}x=7k\\y=5k\end{cases}}\)

Thay vào ta được: \(2\left(5k\right)^2-\left(7k\right)^2=-28\)

\(\Leftrightarrow k^2=-28\) (vô lý)

=> Không tồn tại x,y thỏa mãn

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)

1 tháng 8 2017

a) Áp dụng tính chất ..., ta có :

 \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{8}{4}=2\)

\(\Rightarrow x=4;y=6;z=8\)

b)2x = 4y \(\Rightarrow\frac{x}{4}=\frac{y}{2}\)\(\Rightarrow\frac{x}{20}=\frac{y}{10}\)( 1 )

4y =5z \(\Rightarrow\frac{y}{5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{10}=\frac{z}{8}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{20}=\frac{y}{10}=\frac{z}{8}\)

Áp dụng tính chất ..., ta có :

\(\frac{x}{20}=\frac{y}{10}=\frac{z}{8}=\frac{x-y+2z}{20-10+16}=\frac{40}{26}=\frac{20}{13}\)

\(\Rightarrow x=\frac{400}{13};y=\frac{200}{13};z=\frac{160}{13}\)

còn lại tương tự

26 tháng 12 2015

Ta có:

\(\frac{x-1}{2}\) =\(\frac{y-2}{3}\)=\(\frac{z-3}{4}\)=k =>x=2k+1

                                          y=3k+2

                                          z=4k+3

                     Thay vào: x  -  2y  + 3z  =  -10

                              (2k+1)-2x(3k+2)+3x(4k+3)= -10

                              (2k+1)-(6k+4)+(12k+9)= -10

                               (2k-6k+12k)+(1-4+9) = -10

                                      8k    +  6             = -10  

                                              8k               = -16

                                                k               = -2

                                   =>    x = 2x(-2)+1 = -3

                                           y = 3x(-2)+2 = -4

                                           z =4x(-2)+3 =  -5

                                                Vậy .............

                          Nếu đúng nhớ **** cho mk nha!

 

 

 

 

26 tháng 12 2015

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-2y+z}{2-3+4}=\frac{-10}{3}\)

Mặt khác: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x+y+z-6}{9}\)

=> \(\frac{x+y+z-6}{9}=\frac{-10}{3}\)

=> x + y + z - 6 = -10.9 : 3 = -30

=> x + y + z = -24

3 tháng 10 2020

Bài 1 :

a) Đặt \(\frac{x}{4}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=4k\\y=5k\end{cases}}\)

=> xy = 4k.5k = 20k2

=> 20k2  = 80

=> k2 = 4

=> k = \(\pm\)2

Với k = 2 thì \(\hept{\begin{cases}x=4\cdot2=8\\y=5\cdot2=10\end{cases}}\)

Với k = -2 thì \(\hept{\begin{cases}x=4\cdot\left(-2\right)=-8\\y=5\cdot\left(-2\right)=-10\end{cases}}\)

b) Ta có : \(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x^2}{16}=\frac{y^2}{25}\Rightarrow\frac{x^2}{16}=\frac{3y^2}{75}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{3y^2}{75}=\frac{x^2-3y^2}{16-75}=\frac{-59}{-59}=1\)

=> \(\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{25}=1\end{cases}}\Rightarrow\hept{\begin{cases}x^2=16\\y^2=25\end{cases}}\Rightarrow\hept{\begin{cases}x=\pm4\\y=\pm5\end{cases}}\)

Bài 2 :

a) Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=\frac{x+y+z}{3+5+6}=\frac{56}{14}=4\)

=> \(\hept{\begin{cases}\frac{x}{3}=4\\\frac{y}{5}=4\\\frac{z}{6}=4\end{cases}}\Rightarrow\hept{\begin{cases}x=12\\y=20\\z=24\end{cases}}\)

b) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{3}=\frac{2y}{10}=\frac{3z}{18}=\frac{x-2y+3z}{3-10+18}=\frac{-33}{11}=-3\)

=> \(\hept{\begin{cases}\frac{x}{3}=-3\\\frac{y}{5}=-3\\\frac{z}{6}=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=-15\\z=-18\end{cases}}\)

c) Đặt \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\\z=6k\end{cases}}\)

=> xyz = 3k.5k.6k = 90k3

=> 90k3 = 720

=> k3 = 8

=> k = 2

Với k = 2 thì x = 3.2 = 6,y = 5.2 = 10,z = 6.2 = 12

d) Ta có : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{x^2}{9}=\frac{y^2}{25}=\frac{z^2}{36}\)

=> \(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{4y^2}{100}=\frac{2z^2}{72}=\frac{x^2-4y^2+2z^2}{9-100+72}=\frac{-475}{-19}=25\)

=> x2 = 25.9 = 225 => x = \(\pm\)15

y2 = 25.25 = 625 => y = \(\pm\)25

z2 = 25.36 = 900 => z = \(\pm\)30

3 tháng 10 2020

ui cảm ơn cậu nhiều nhé

22 tháng 12 2019

c)\(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)\(2x^2+2y^2-3z^2=-100\)

đặt\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\frac{x}{3}=k\Rightarrow x=3k\)

\(\Rightarrow\frac{y}{4}=k\Rightarrow y=4k\)

\(\Rightarrow\frac{z}{5}=k\Rightarrow z=5k\)

\(2x^2+2y^2-3z^2=-100\)

thay\(6k^2+8k^2-15k^2=-100\)

\(k^2\left(6+8-15\right)=-100\)

\(k^2.\left(-1\right)=-100\)

\(k^2=100\)

\(\Rightarrow k=\pm10\)

bạn thế vào nha

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

12 tháng 7 2019

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\frac{x-y+z}{10-15+12}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\) mà x - y + z = -21

\(\Rightarrow\frac{-21}{7}=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow-3=\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)

\(\Rightarrow\hept{\begin{cases}x=-3\cdot10=-30\\y=-3\cdot15=-45\\z=-3\cdot12=-36\end{cases}}\)

16 tháng 3 2018

Ta có : 

\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+2y-5}{y-1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x+y}{2}=\frac{y-5}{3}=\frac{x+y+y-5}{2+3}=\frac{x+2y-5}{2+3}=\frac{x+2y-5}{5}\)

Lại có \(\frac{x+2y-5}{y-1}=\frac{x+2y-5}{5}\)

\(\Leftrightarrow\)\(y-1=5\)

\(\Leftrightarrow\)\(y=6\)

Suy ra : \(\frac{x+y}{2}=\frac{y-5}{3}\)

\(\Leftrightarrow\)\(\frac{x+6}{2}=\frac{6-5}{3}\)

\(\Leftrightarrow\)\(\frac{x+6}{2}=\frac{1}{3}\)

\(\Leftrightarrow\)\(x+6=\frac{1}{3}.2\)

\(\Leftrightarrow\)\(x+6=\frac{2}{3}\)

\(\Leftrightarrow\)\(x=\frac{2}{3}-6\)

\(\Leftrightarrow\)\(x=\frac{-16}{3}\)

Vậy \(x=\frac{-16}{3}\) và \(y=6\)

Chúc bạn học tốt ~