Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
\(\frac{x}{4}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{15}\Rightarrow\frac{x}{12}=\frac{2}{x}\Rightarrow x^2=24\Rightarrow x=\pm\sqrt{24}\)
\(TH1:x=\sqrt{24}\Rightarrow y=\frac{\sqrt{24}.5}{4}=\frac{5\sqrt{6}}{2}\)
\(TH2:x=-\sqrt{24}\Rightarrow y=\frac{-\sqrt{24}.5}{4}=\frac{-5\sqrt{6}}{2}\)
Ta có: \(\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4y}{5}\)
Thay \(x=\frac{4y}{5}\left(1\right)\)vào \(\frac{2}{x}=\frac{y}{15}\)ta được:
\(2:\frac{4y}{5}=\frac{y}{15}\)
\(\Rightarrow\frac{10}{4y}=\frac{y}{15}\)
\(\Rightarrow4y^2=10.15\)
\(\Rightarrow4y^2=150\)
\(\Rightarrow y^2=\frac{75}{2}\)
\(\Rightarrow y=\pm\frac{5\sqrt{6}}{2}\)
TH1: \(y=\frac{5\sqrt{6}}{2}\)thay vào (1) ta được:
\(x=2\sqrt{6}\)
TH2: \(y=-\frac{5\sqrt{6}}{2}\)thay vào(1) ta được:
\(x=-2\sqrt{6}\)
Vậy ...
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{4}\)= \(\frac{z}{5}\)và x + y - z = 10
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\); \(\frac{y}{12}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{8}\)= \(\frac{y}{12}\)= \(\frac{z}{15}\)= \(\frac{x+y-z}{8+12-15}\)= \(\frac{10}{5}\)= 2
\(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{12}=2\\\frac{z}{15}=2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Vậy x= 16
y= 24
z= 30
d) 2x = 3y ; 5x = 7z và 3x - 7y + 5x = 3
\(\Rightarrow\)\(\frac{x}{3}\)= \(\frac{y}{2}\); \(\frac{x}{7}\)= \(\frac{z}{5}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\); \(\frac{x}{21}\)= \(\frac{z}{15}\)
\(\Rightarrow\)\(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{x}{21}\)= \(\frac{y}{14}\)= \(\frac{z}{15}\)\(\Rightarrow\)\(\frac{3x}{63}\)= \(\frac{7y}{98}\)= \(\frac{5z}{75}\)= \(\frac{3x-7y+5z}{63-98+75}\)= \(\frac{30}{40}\)=\(\frac{3}{4}\)
\(\hept{\begin{cases}\frac{x}{21}=\frac{3}{4}\\\frac{y}{14}=\frac{3}{4}\\\frac{z}{15}=\frac{3}{4}\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{63}{4}\\y=\frac{21}{2}\\z=\frac{45}{4}\end{cases}}\)
Vậy x= \(\frac{63}{4}\)
y= \(\frac{21}{2}\)
z= \(\frac{45}{4}\)
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}\) và \(x+2y-z=156\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z-1}{5}=\frac{x+1+2\left(y+2\right)-\left(z-1\right)}{3+8-5}=\frac{x+1+2y+4-z+1}{6}=\frac{\left(x+2y-z\right)+1+4+1}{6}=\frac{156+6}{6}=27\)
\(\Rightarrow\hept{\begin{cases}x=\left(27.3\right)-1\\y=\left(27.4\right)-2\\z=\left(27.5\right)+1\end{cases}\Rightarrow\hept{\begin{cases}x=80\\y=106\\z=136\end{cases}}}\)
Ta có:
x + 1/3 = y + 2/4 = z - 1/5
=> x + 1/3 = 2y + 4/8 = z - 1/5
Áp dụng tính chất của dãy tỉ số = nhau ta có:
x + 1/3 = 2y + 4/8 = z - 1/5 = (x + 1) + (2y + 4) - (z - 1)/3 + 8 - 5
= (x + 2y - z) + (1 + 4 + 1)/6
= 156 + 6/6 = 162/6 = 27
=> x + 1 = 27.3; y + 2 = 27.4; z - 1 = 27.5
=> x + 1 = 81; y + 2 = 108; z - 1 = 135
=> x = 80; y = 106; z = 136
a. \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow x=2k;y=3k\)
\(xy=54\Rightarrow2k3k=54\Rightarrow6k^2=54\Rightarrow k^2=9\Rightarrow k\in\left\{3;-3\right\}\)
\(k=3\Rightarrow x=6;y=9\)
\(k=-3\Rightarrow x=-6;y=-9\)
b.\(\frac{x}{5}=\frac{y}{3}=k\Rightarrow x=5k;y=3k\)
\(\Rightarrow\left(5k\right)^2-\left(3k\right)^2=4\Rightarrow25k^2-9k^2=4\)
\(\Rightarrow16k^2=4\Rightarrow k^2=\frac{1}{4}\Rightarrow k\in\left\{\frac{1}{2};-\frac{1}{2}\right\}\)
\(k=\frac{1}{2}\Rightarrow x=\frac{5}{2};y=\frac{3}{2}\)
\(k=-\frac{1}{2}\Rightarrow x=\frac{-5}{2};y=\frac{-3}{2}\)
c.\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{92}{46}=2\)
\(\Rightarrow x=20,y=30,z=42\)
d.\(\frac{x^2}{9}=\frac{y^2}{16}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow x^2=36\Rightarrow x\in\left\{6;-6\right\};y^2=64\Rightarrow y\in\left\{8;-8\right\}\)
\(\frac{x}{4}=\frac{y}{5}\)
\(\frac{2}{x}=\frac{y}{15}=\frac{y}{5\cdot3}=\frac{x}{4\cdot3}=\frac{x}{12}\)
\(\Leftrightarrow\frac{2}{x}=\frac{x}{12}\Leftrightarrow x=\sqrt{24}\)\(\Rightarrow y=\frac{5\sqrt{6}}{2}\)
giải
Vì \(\frac{x}{4}=\frac{y}{5}\)
\(\Rightarrow x=\frac{4y}{5}\)
Thay \(x=\frac{4y}{5}\)vào \(\frac{2}{x}=\frac{y}{15}\)ta được :
\(2:\frac{4y}{5}=\frac{y}{15}\)
\(\Rightarrow\frac{10}{4y}=\frac{y}{15}\)
\(\Rightarrow\frac{5}{2y}=\frac{y}{15}\)
\(\Rightarrow2y.y=5.15\)
\(\Rightarrow2y^2=75\)
\(\Rightarrow y^2=\frac{75}{2}\)
\(\Rightarrow y=\pm\sqrt{\frac{75}{2}}\)
đề bài sai ak lớp 7 đã học căn đâu hay tại làm sai xem hộ cái