Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xy=2(x+y)
<=> (xy-2x)-(2y-4)=4
<=>x(y-2)-2(y-2)=4
<=>(X-2)(y-2)=4=1.4=2.2
Có x,y là số nguyên dương nên x-2,y-2 là số nguyên dương lớn hơn hoặc bằng-2 nên ta có
Th1: x-2=1,y-2=4
=> X=3,y=6.
Th2: x-2=4,y-2=1
=> X=6,y=3.
Th3: x-2=y-2=2
=> X=y=4.
3xy + y=4-x
<=>9xy+3y=12-3x
<=>9xy+3y+3x+1=13
<=>3y.(3x+1)+(3x+1)=13
<=>(3x+1)(3y+1)=13
<=> *{3x+1=13y+1=13{3x+1=13y+1=13<=>{x=0y=4{x=0y=4(nhận)
*{3x+1=123y+1=1{3x+1=123y+1=1<=>{x=4y=0{x=4y=0(nhận)
*{3x+1=−13y+1=−13{3x+1=−13y+1=−13<=>{x=−23y=−143{x=−23y=−143(loại)
*{3x+1=−133y+1=−1{3x+1=−133y+1=−1<=>{x=−143y=−23{x=−143y=−23(loại)
Vậy x=4 thì y=0 ; x=0 thì y=4
Từ \(5x=2y\)\(\Rightarrow\frac{x}{y}=\frac{2}{5}\)
Từ \(2x=3z\)\(\Rightarrow\frac{x}{z}=\frac{3}{2}\)
Từ \(xy=90\)\(\Rightarrow x=\frac{90}{y};y=\frac{90}{x}\)
Ta có: \(\frac{x}{y}=\frac{2}{5}\)
Mà \(x=\frac{90}{y}\)
Nên \(\frac{\frac{90}{y}}{y}=\frac{2}{5}\)\(\Leftrightarrow\frac{90}{y^2}=\frac{2}{5}\)\(\Leftrightarrow y=\pm15\)
*Khi \(y=15\) thì \(x=\frac{90}{15}=6\) và \(z=\frac{6.2}{3}=4\)
*Khi \(y=-15\) thì \(x=\frac{90}{-15}=-6\) và \(z=\frac{-6.2}{3}=-4\)
Vậy \(\left\{x;y;z\right\}\in\left\{\left(6;15;4\right),\left(-6;-15;-4\right)\right\}\)
Vì vế phải lớn nơn hoặc bằng 0 nên vế trái lớn hơn hoặc bằng 0 nên y^2 nhỏ hơn hoặc bằng 25 hay y nhỏ hơn hoặc bằng 5 nên y thuộc 1;2;3;4;5 rồi ngời thay giá trị y vào đề bài rồi tìm được y và x
Mình bận nên chỉ viết đc gợi ý thôi nha thông cảm
Bạn vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
\(\left|3x-4\right|-\left|y+3\right|=0\)
\(\Rightarrow\left|3x-4\right|+\left|3-y\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3-y=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=3\end{cases}}}\)
\(A=|x+1|+|x+2|=|-x-1|+|x+2|\)
\(\Rightarrow A\ge|-x-1+x+2|\)
\(\Rightarrow A\ge1\)
\(A=1\Leftrightarrow\hept{\begin{cases}-x-1\ge0\\x+2\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge-2\end{cases}}\)\(\Leftrightarrow-2\le x\le-1\)
Vậy \(minA=1\Leftrightarrow-2\le x\le-1.\)
Chắc chăn đúng nha bạn
~ học tốt nha ~