Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)(ĐK : \(x\ge2;y\ge3;z\ge5\))
\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)
Vì \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)nên phương trình tương đương với :
\(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\)(TMĐK)
Vậy nghiệm của phương trình : \(\left(x;y;z\right)=\left(3;7;14\right)\)
cho tam giac ABC vuong tai A , AH vuong goc BC , goi E,F lan luot la hinh chieu vuong goc cua H len AB va AC. Đat AB=x, BC=2a( a la hằng so k doi).
a) cm: AH.AH.AH=BC.BE.BF=BC.HE.HF
b) tinh dien h tam giac AEF theo a va x
tim x de dien h tam giac AEF đặt GTNN
ĐK : \(x\ge2,y\ge3,z\ge4\) .
\(pt\Leftrightarrow x+y+z-6=2\sqrt{x-2}+2\sqrt{y-3}+2\sqrt{z-4}\)
\(\Leftrightarrow\left[\left(x-2\right)-2\sqrt{x-2}+1\right]+\left[\left(y-3\right)-2\sqrt{y-3}+1\right]+\left[\left(z-4\right)-2\sqrt{z-4}+1\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-1\right)^2+\left(\sqrt{z-4}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(TM\right)\)
a)\(\left(2\sqrt{x}-3\right)\left(2+\sqrt{x}\right)+6=0\)
\(\Leftrightarrow4\sqrt{x}+2x-6-3\sqrt{x}+6=0\)
\(\Leftrightarrow2x-\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=0\\2\sqrt{x}-1=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{4}\end{array}\right.\)
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
Chị xem hướng dẫn giải và đáp án bên dưới nha cj,em mới học lớp 6 à !
Hướng dẫn giải và đáp án :
- Trước hết ta chứng minh : Nếu a \(\inℕ,\sqrt{a}\inℚ\)thì \(\sqrt{a}\inℕ\).Thật vậy
vì \(\sqrt{a}\inℚ\)nên \(\sqrt{a}=\frac{m}{n}\left(m,n\inℕ,n\ne0,\left(m,n\right)=1\right)\).Ta có :
\(a=\frac{m^2}{n^2}\Leftrightarrow a.n^2=m^2\Rightarrow m^2⋮n^2\Rightarrow n=1\Rightarrow a=m\inℕ\)( vì (m,n) = 1 )
-Vận dụng kết quả trên ta lần lượt chứng minh : \(\sqrt{xy}\inℕ,\sqrt{x}\inℕ,\sqrt{y}\inℕ\)
Chứng minh :
(1) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-2016\Leftrightarrow x+y+2\sqrt{xy}=2016^2-2.2016\sqrt{xy}+xy\)
\(\Leftrightarrow\sqrt{xy}=\frac{2016^2+xy-x-y}{4034}\inℚ\).Đặt k = \(\sqrt{xy}\),thay vào (1) ta được :
\(\sqrt{x}=k-2016-\sqrt{y}\Leftrightarrow x=\left(k-2016^2\right)-2.\left(k-2016\right)\sqrt{y}+y\)
\(\Leftrightarrow\sqrt{y}=\frac{\left(k-2016\right)^2+y-x}{2.\left(k-2016\right)}\inℚ\).Ta có :
\(\sqrt{x}+\sqrt{y}+2016=\sqrt{xy}\Leftrightarrow\left(\sqrt{x}-1\right).\left(\sqrt{y}-1\right)=2017.\)Vì \(\sqrt{x}-1\inℤ,\sqrt{y}-1\inℤ\)nên \(\sqrt{x}-1,\sqrt{y}-1\)là các ước của 2017
Vì 2017 là số nguyên tố nên ta có các trường hợp :
1)\(\hept{\begin{cases}\sqrt{x}-1=1\\\sqrt{y}-1=2017\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2018^2\end{cases}}}\)
2) \(\hept{\begin{cases}\sqrt{x}-1=2017\\\sqrt{y}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2018^2\\y=4\end{cases}}}\)
Vậy các cặp số nguyên (x,y ) thỏa mãn là :(20182 , 4) ; ( 4,20182).
ĐKXĐ : \(x\ge0;y\ge1\)
\(x+y+12=4\sqrt{x}+6\sqrt{y-1}\)
\(\Leftrightarrow x-4\sqrt{x}+4+y-1-6\sqrt{y-1}+9=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\left(\sqrt{y-1}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{y-1}-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=10\end{cases}}}\)