K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

a) \(x^2-10x+4y^2-4y+26=0\)

\(\Leftrightarrow\left(x^2-10x+25\right)+\left(4y^2-4y+1\right)=0\)

\(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2=0\)

Mà \(\Leftrightarrow\left(x-5\right)^2+\left(2y-1\right)^2\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}x-5=0\\2y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{1}{2}\end{cases}}\)

24 tháng 7 2016

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

25 tháng 7 2016

Lấy pt (2) - pt (1) ta có:

                           8y + 8 = 0

=>                               y = -1

Thay y = -1 vào pt (1) ta có: 

       x2 - 10x + 26 = 0

( Giải phương trình bậc 2 bằng máy tính casio )

Ta được: x là số phức => phương trình vô nghiệm 

=>  Không tìm được cặp x,y thảo mãn hệ phương trình trên.

25 tháng 7 2016

Hỏi đáp Toán

11 tháng 10 2020

a) x2 + 4y + 4y2 + 26 - 10x = ( x2 - 10x + 25 ) + ( 4y2 + 4y + 1 ) = ( x - 5 )2 + ( 2y + 1 )2

b) 4y2 + 34 - 10x + 12y + x2 = ( x2 - 10x + 25 ) + ( 4y2 + 12y + 9 ) = ( x - 5 )2 + ( 2y + 3 )2

c) -10x + y2 - 8y + x2 + 41 = ( x2 - 10x + 25 ) + ( y2 - 8y + 16 ) = ( x - 5 )2 + ( y - 4 )2

d) x2 + 9y2 - 12y + 29 - 10x = ( x2 - 10x + 25 ) + ( 9y2 - 12y + 4 ) = ( x - 5 )2 + ( 3y - 2 )2

11 tháng 10 2020

a) \(x^2+4y+4y^2+26-10x\)

\(=\left(x^2-10x+25\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-5\right)^2+\left(2y+1\right)^2\)

b) \(4y^2+34-10x+12y+x^2\) đề ntn à?

\(=\left(4y^2+12y+9\right)+\left(x^2-10x+25\right)\)

\(=\left(2y-3\right)^2+\left(x-5\right)^2\)

c) \(-10x+y^2-8y+x^2+41\)

\(=\left(x^2-10x+25\right)+\left(y^2-8y+16\right)\)

\(=\left(x-5\right)^2+\left(y-4\right)^2\)

d) \(x^2+9y^2-12y+29-10x\)

\(=\left(x^2-10x+25\right)+\left(9y^2-12y+4\right)\)

\(=\left(x-5\right)^2+\left(3y-2\right)^2\)

24 tháng 6 2017

\(P=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)Vậy \(Max_P=10\) khi \(x-3=0\Rightarrow x=3\)

24 tháng 6 2017

b, \(P=-x^2+6x+1=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-3x-3x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2-10\ge-10\)

\(\Rightarrow-\left[\left(x-3\right)^2-10\right]\ge10\)

Hay \(P\ge10\) với mọi giá trị của \(x\in R\).

Để \(P=10\) thì \(-\left[\left(x-3\right)^2-10\right]=10\)

\(\Rightarrow\left(x-3\right)^2=0\Rightarrow x=3\)

Vậy.....

Chúc bạn học tốt!!!

28 tháng 8 2020

x+ y2 + 10x + 6y + 34 = 0

=> (x2 + 10x + 25) + (y2 + 6y + 9) = 0

=> (x + 5)2 + (y + 3)2 = 0

=> \(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Vậy x = - 5 ; y = -3

b) 25x2 + 4y2 + 10x + 4y + 2 = 0

=> (25x2 + 10x + 1) + (4y2 + 4y + 1) = 0

=> (5x + 1)2 + (2y + 1)2 = 0

=> \(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-0,2\\y=-0,5\end{cases}}\)

Vậy x = -0,2 ; y = -0,5

28 tháng 8 2020

a) 

\(x^2+10x+25+y^2+6y+9=0\)    

\(\left(x+5\right)^2+\left(y+3\right)^2=0\)  ( 1 ) 

Ta có : 

\(\left(x+5\right)^2\ge0\forall x\) 

\(\left(y+3\right)^2\ge0\forall y\) 

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}x+5=0\\y+3=0\end{cases}}\)         

\(\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)   

b) 

\(25x^2+10x+1+4y^2+4y+1=0\)     

\(\left(5x+1\right)^2+\left(2y+1\right)^2=0\) ( 1 ) 

Ta có : 

\(\left(5x+1\right)^2\ge0\forall x\)      

\(\left(2y+1\right)^2\ge0\forall y\)  

\(\left(1\right)=0\Leftrightarrow\hept{\begin{cases}\left(5x+1\right)^2=0\\\left(2y+1\right)^2=0\end{cases}}\)   

\(\hept{\begin{cases}5x+1=0\\2y+1=0\end{cases}}\)    

\(\hept{\begin{cases}x=\frac{-1}{5}\\y=\frac{-1}{2}\end{cases}}\)

7 tháng 8 2018

a) x2−2x−4y2−4y=(x2−4y2)−(2x+4y)=(x−2y).(x+2y)−2.(x+2y)

=(x+2y).(x−2y−2)

b)  x4+2x3−4x−4=(x4−4)+(2x3−4x)=(x2+2).(x2−2)+2x.(x2−2)

=(x2−2).(x2+2+2x)