Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $0\leq x,y,z\leq 1$ nên:
$x(x-1)(y-1)\geq 0$
$\Leftrightarrow x^2y\geq x^2+xy-x$
Tương tự và cộng theo vế:
$x^2y+y^2z^2+z^2x+1\geq x^2+y^2+z^2+(xy+yz+xz)-(x+y+z)+1(*)$
Lại có:
$(x-1)(y-1)(z-1)\leq 0$
$\Leftrightarrow xyz-(xy+yz+xz)+(x+y+z)-1\leq 0$
$\Leftrightarrow xy+yz+xz-(x+y+z)\geq xyz-1\geq -1$ do $xyz\geq 0(**)$
Từ $(*); (**)\Rightarrow x^2y+y^2z+z^2x+1\geq x^2+y^2+z^2$
Ta có đpcm
Dấu "=" xảy ra khi $(x,y,z)=(0,1,1); (0,0,1)$ và hoán vị.
\(x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)+3\left(x+y\right)^2-6xy+4\left(x+y\right)+4=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(\left(x+y\right)^2+x+y+2\right)-3xy\left(x+y+2\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left(x^2+y^2+2xy+x+y+2-3xy\right)=0\)
\(\Leftrightarrow\left(x+y+2\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+2\right]=0\)
\(\Leftrightarrow x+y+2=0\)
\(\Leftrightarrow x+y=-2\)
\(M=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}=\frac{4}{-2}=-2\)
Dấu \(=\)khi \(x=y=-1\).
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
CMR: \(\frac{1}{x}+\frac{1}{y}\le2\) biết \(^{x^3+y^3+3\left(x^2+y^2\right)+4\left(x+y\right)+4=0}\) và xy>0
\(x+y=35\Rightarrow y=35-x\)
Thế vào \(x^2+y^2=625\)
\(\Rightarrow x^2+\left(35-x\right)^2=625\)
\(\Leftrightarrow2x^2-70x+600=0\)
\(\Rightarrow\left[{}\begin{matrix}x=15\Rightarrow y=20\\x=20\Rightarrow y=15\end{matrix}\right.\)
x + y = 3 => y = 3 - x
Ta có:
x.y = -28
<=> x.(3-x) = -28
<=> 3x - x^2 = -28
<=> -x^2 + 3x + 28 = 0
Tới đây giải pt bậc 2 là ra nhé
nói thật bạn trả lời bên dưới nha trả lời vậy trả lời làm cl.Mình đg tìm lời giải rên mạng mà cx phải lập cái nick góp y đó
Lời giải:
$x^2+y^2-xy-3x+3=0$
$\Leftrightarrow (y^2-xy+\frac{x^2}{4})+(\frac{3}{4}x^2-3x+3)=0$
$\Leftrightarrow (y-\frac{x}{2})^2+3(\frac{x}{2}-1)^2=0$
Do $(y-\frac{x}{2})^2\geq 0; 3(\frac{x}{2}-1)^2\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(y-\frac{x}{2})^2=3(\frac{x}{2}-1)^2=0$
$\Leftrightarrow y=\frac{x}{2}; \frac{x}{2}=1$
$\Leftrightarrow x=2; y=1$