Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{6}=\frac{y}{-14}\) mà \(\frac{y}{-14}=\frac{z}{5}\)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{5}=\frac{2x+4y-6z}{12-56-30}=-\frac{15}{74}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{15}{74}\cdot6=-\frac{45}{37}\\y=-\frac{15}{74}\cdot\left(-14\right)=\frac{105}{37}\\z=-\frac{15}{74}\cdot-\frac{75}{74}\end{cases}}\)
Ta có:
\(\frac{2x}{3}=\frac{4y}{7}\)=>\(\frac{2x}{12}=\frac{4y}{28}\)=>\(\frac{x}{6}=\frac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{7}=\frac{x+y}{6+7}=\frac{11}{11}=1\)
=>\(\frac{x}{6}=1\)=>\(x=6\)
\(\frac{y}{7}=1\)=>\(y=7\)
Vậy \(x=6;y=7\)
Ta có\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{-3}.\frac{1}{-2}=\frac{y}{7}.\frac{1}{-2}\Rightarrow\frac{x}{6}=\frac{y}{-14}\left(1\right)\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-2}.\frac{1}{7}=\frac{z}{5}.\frac{1}{7}\Rightarrow\frac{y}{-14}=\frac{z}{35}\left(2\right)\)
Từ (1)(2)
=> \(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}\)
=> \(\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{-2x}{-12}=\frac{4y}{-56}=\frac{5z}{175}=\frac{-2x-4y+5z}{-12+56+175}=\frac{146}{219}=\frac{2}{3}\)
=> \(\hept{\begin{cases}\frac{x}{6}=\frac{2}{3}\\\frac{y}{-14}=\frac{2}{3}\\\frac{z}{35}=\frac{2}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)
Bài làm:
Ta có: \(\frac{x}{-3}=\frac{y}{7}\Leftrightarrow\frac{x}{-6}=\frac{y}{14}\left(1\right)\)
và \(\frac{y}{-2}=\frac{z}{5}\Leftrightarrow\frac{y}{14}=\frac{z}{-35}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}\)
Áp dụng t/c của dãy tỉ số bằng nhau ta được:
\(\frac{x}{-6}=\frac{y}{14}=\frac{z}{-35}=\frac{-2x-4y+5z}{12-56-175}=\frac{146}{-219}=-\frac{2}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{-6}=-\frac{2}{3}\\\frac{y}{14}=-\frac{2}{3}\\\frac{z}{-35}=-\frac{2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{28}{3}\\z=\frac{70}{3}\end{cases}}\)
Vậy \(x=4\) ; \(y=-\frac{28}{3}\) và \(z=\frac{70}{3}\)
7) vì \(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)và x-y+z=36
Nên theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\)=\(\dfrac{x-y+z}{5-6+7}\)=\(\dfrac{36}{6}\)=6
\(\Rightarrow\)x=6.5=30
y=6.6=36
z=6.7=42
vậy x=30,y=36,z=42
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
theo dãy tỉ số bằng nhau:
\(\frac{x}{-3}=\frac{y}{-7}\)
\(\Rightarrow\frac{2x}{2.\left(-3\right)}=\frac{4y}{4.\left(-7\right)}=\frac{2x+4y}{-6+\left(-28\right)}=\frac{68}{-34}=-2\)
\(\Rightarrow\frac{2x}{2.\left(-3\right)}=-2\Rightarrow x=-2.\left(-3\right)=6\)
\(\Rightarrow\frac{4y}{4.\left(-7\right)}=-2\Rightarrow y=-2.\left(-7\right)=14\)