\(\sqrt{x}+\sqrt{2004-y}=\sqrt{2004}\) và \(\sqrt{y}+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

ĐKXĐ: 0 \(\le\) x, y \(\le\) 2004

Bình phương mỗi vế của mỗi đẳng thức đã cho ta được:

\(\left\{{}\begin{matrix}x+2004-y+2\sqrt{x\left(2004-y\right)}=2004\\y+2004-x+2\sqrt{y\left(2004-x\right)}=2004\end{matrix}\right.\)

Cộng vế với vế của hai đẳng thức trên ta được:

\(4008+2\left[\sqrt{x\left(2004-y\right)}+\sqrt{y\left(2004-x\right)}\right]=4008\)

\(\Leftrightarrow\sqrt{x\left(2004-y\right)}+\sqrt{y\left(2004-x\right)}=0\)

\(\Leftrightarrow x\left(2004-y\right)=y\left(2004-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y=0\\x=y=2004\end{matrix}\right.\) (thoả mãn)

Vậy (x, y) \(\in\) {(0; 0), (2004; 2004)}

25 tháng 5 2016

\(\frac{\sqrt{x-2002}}{x-2002}-\frac{1}{x-2002}+\frac{\sqrt{y-2003}}{y-2003}-\frac{1}{y-2003}+\frac{\sqrt{z-2004}}{z-2004}-\frac{1}{z-2004}=\frac{3}{4}\)

\(1-\frac{1}{x-2002}+1-\frac{1}{y-2003}+1-\frac{1}{z-2004}=\frac{3}{4}\)

\(3-\frac{1}{x-2002}-\frac{1}{y-2003}-\frac{1}{z-2004}=\frac{3}{4}\)

\(\frac{1}{x-2002}+\frac{1}{y-2003}+\frac{1}{z-2004}=3-\frac{3}{4}=\frac{9}{4}\)

=> không có giá trị x,y,z thỏa mãn đề

29 tháng 8 2018

2139,356218

11 tháng 9 2020

\(\Leftrightarrow x+y+z=2\sqrt{x-2}+2\sqrt{y+2003}+2\sqrt{z-2004}\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)\)

\(+\left(z-2004-2\sqrt{z-2004}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Vì biểu thức trên là tổng của các số hạng không âm nên nó bằng 0 khi và chỉ khi các số hạng phải bằng 0

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-2003}=1\\\sqrt{z-2004}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=2004\\z=2005\end{cases}}}\)

11 tháng 9 2020

\(ĐK:x\ge2,y\ge-2003,z\ge2004\)

Pt đã cho tương đương :

\(x+y+z-2\sqrt{x-2}-2\sqrt{y+2003}-2\sqrt{z-2004}=0\)

\(\Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y+2003-2\sqrt{y+2003}+1\right)+\left(z-2004-2\sqrt{z-2004}+1\right)\)\(=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y+2003}-1\right)^2+\left(\sqrt{z-2004}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=1\\y+2003=1\\z-2004=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=-2002\\z=2005\end{cases}}\)(Thỏa mãn)

28 tháng 5 2018

đề này sai rồi

28 tháng 5 2018

kết quả = 2044

28 tháng 6 2017

\(\sqrt{2003}\)\(+\)\(\sqrt{2004}\)\(>\)\(2\)\(\sqrt{2004}\)

k mik nhaavt111329_60by60.jpg

28 tháng 6 2017

Đặt \(A^2=\left(\sqrt{2003}+\sqrt{2004}\right)^2>0\)

\(\le\left(1+1\right)\left(2003+2004\right)=2\cdot4007=8014\)

\(\Rightarrow A^2\le8014\). Và 

\(B^2=\left(2\sqrt{2004}\right)^2=4\cdot2004=8016\)

Suy ra \(A^2\le8014< 8016=B^2\Leftrightarrow A< B\)

28 tháng 5 2019

Có:\(\sqrt{2005}-\sqrt{2004}=\frac{2005-2004}{\sqrt{2005}+\sqrt{2004}}=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

;\(\sqrt{2004}-\sqrt{2003}=\frac{2004-2003}{\sqrt{2004}+\sqrt{2003}}=\frac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2005}+\sqrt{2004}>\sqrt{2004}+\sqrt{2003}\)\(\Rightarrow\sqrt{2005}-\sqrt{2004}< \sqrt{2004}-\sqrt{2003}\)