\(x^2+y^2+xy-x+y+1=0\)                                                   ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
$x^2+y^2+xy-x+y+1=0$

$\Leftrightarrow 2x^2+2y^2+2xy-2x+2y+2=0$

$\Leftrightarrow (x^2+2xy+y^2)+(x^2-2x+1)+(y^2+2y+1)=0$

$\Leftrightarrow (x+y)^2+(x-1)^2+(y+1)^2=0$

Vì $(x+y)^2, (x-1)^2, (y+1)^2\ge 0$ với mọi $x,y\in\mathbb{R}$

Do đó để tổng của chúng $=0$ thì $(x+y)^2=(x-1)^2=(y+1)^2=0$

$\Leftrightarrow x=1; y=-1$

9 tháng 9 2019

1/a/
\(A=\frac{2}{xy}+\frac{3}{x^2+y^2}=\left(\frac{1}{xy}+\frac{1}{xy}+\frac{4}{x^2+y^2}\right)-\frac{1}{x^2+y^2}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}-\frac{1}{\frac{\left(x+y\right)^2}{2}}=16-2=14\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

9 tháng 9 2019

b/

\(4B=\frac{4}{x^2+y^2}+\frac{8}{xy}+16xy=\left(\frac{4}{x^2+y^2}+\frac{1}{xy}+\frac{1}{xy}\right)+\left(\frac{1}{xy}+16xy\right)+\frac{5}{xy}\)

\(\ge\frac{\left(1+1+2\right)^2}{\left(x+y\right)^2}+2\sqrt{\frac{1}{xy}.16xy}+\frac{5}{\frac{\left(x+y\right)^2}{4}}\)

\(=16+8+20=44\)

\(\Rightarrow B\ge11\)

Dấu = xảy ra khi \(x=y=\frac{1}{2}\)

27 tháng 10 2019

\(x^2+y^2+1-xy-x+y=0\)

\(\Leftrightarrow2\left(x^2+y^2+1-xy-x+y\right)=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(x^2-2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(x-y\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-1=0\\x-y=0\end{cases}}\Leftrightarrow x=y=1\)

Vậy \(x=y=1\)

2 tháng 4 2017

k mk đi làm ơn 

mk đang bị âm điểm

2 tháng 4 2017

bạn giúp mình đi làm ơn

mình đang ko biết cách làm

1 tháng 11 2019

Sao đã có x,y>0 lại có x+y=0 vậy bạn

1 tháng 9 2019

\(a,x^2+y^2-x-y=8\)

\(\Rightarrow x^2-x+\frac{1}{4}+y^2-y+\frac{1}{4}-8,5=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5=0\)

Ta có : \(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-8,5\ge-8,5\forall x;y\)

Để VP=0 và là các số nguyên 

=>\(\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=8,5\)

1 tháng 9 2019

a/ x^2 + y^2 - x - y = 8

<=> 4x^2 + 4y^2 - 4x - 4y = 32

<=> (2x - 1)^2 + (2y - 1)^2 = 34

<=> (2x - 1)^2 = 9 và (2y - 1)^2 = 25

Hoặc (2x - 1)^2 = 25 và (2y - 1)^2 = 9

5 tháng 4 2017

tớ không biết

5 tháng 4 2017

cj lậy chú

nhây vừa thoi