Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(e,x^2+2xy+y^2-2x-2y+1\)
\(=\left(x+y-1\right)^2\)
Bài 2:
\(b,2x^3+3x^2+2x+3=0\)
\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)
\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)
\(\Leftrightarrow x=-\dfrac{3}{2}\)
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
a ) \(\dfrac{x-y}{x^3+y^3}.Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{x^2-2xy+y^2}{x^2-xy+y^2}:\dfrac{x-y}{x^3+y^3}\)
\(\Leftrightarrow Q=\dfrac{\left(x-y\right)^2}{x^2-xy+y^2}\cdot\dfrac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x-y}\)
\(\Rightarrow Q=\left(x-y\right)\left(x+y\right)=x^2-y^2\)
Vậy \(Q=x^2-y^2\)
b ) \(\dfrac{x+y}{x^3-y^3}.Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}\)
\(\Leftrightarrow Q=\dfrac{3x^2+3xy}{x^2+xy+y^2}:\dfrac{x+y}{x^3-y^3}\)
\(\Leftrightarrow Q=\dfrac{3x\left(x+y\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{x+y}\)
\(\Leftrightarrow Q=3x\left(x-y\right)=3x^2-3xy\)
Vậy \(Q=3x^2-3xy\)
Mấy chế em xin câu 3 ạ :>>
3. Giải pt :
\(x^2-10x+16=0\)
\(\Leftrightarrow x^2-8x-2x+16=0\)
\(\Leftrightarrow\left(x-8\right)\cdot\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Vậy gt của x để bt đạt giá trị bằng 0 là \(x\in\left\{2;8\right\}\)
4. \(2x^2+2xy+y^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+2x^2+2x+1=0\)
\(\Leftrightarrow y^2+2xy+x^2+x^2+2x+1=0\)
\(\Leftrightarrow\left(y+x\right)^2+\left(x+1\right)^2=0\)
\(\Rightarrow x+1=0\Rightarrow x=-1\)
\(\Rightarrow y+x=0\Leftrightarrow y-1=0\Rightarrow y=1\)
Vậy giá trị của \(x\) là -1. (Nếu kết luận cả y thì giá trị của \(y\) là 1)
Hướng dẫn :\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
Thay vào:\(x^2+2yz=x^2+yz+yz=x^2+yz-xy-zx=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)
Tương tự thay vào mà quy đồng
a,\(x^2+2y^2+z^2-2xy-2y+2z+2=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2+2x+1\right)=0\)\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z+1\right)^1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-y=0\\y-1=0\\z+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\y=1\\z=-1\end{matrix}\right.\)
a) \(x^2+4y^2-6x-4y+10=0\)
\(\Leftrightarrow\left(x^2-6x+9\right)+\left(4y^2-4y+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\2y-1=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{2}\end{cases}}\)
b) \(2x^2+y^2+2xy-10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x-5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) \(x^2+2xy+4x-4y-2xy+5=0\)
\(\Leftrightarrow x^2-4x-4y+5=0\)
Xem lại đề câu c).
a) x2 + 4y2 - 6x - 4y + 10 = 0
<=> x2 - 6x + 9 + 4y2 - 4y + 1 = 0
<=> ( x - 3 )2 + ( 4y - 1 )2 = 0
<=> \(\hept{\begin{cases}x-3=0\\4y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=\frac{1}{4}\end{cases}}\)
b) 2x2 + y2 + 2xy - 10x + 25 = 0
<=> x2 + 2xy + y2 + x2 - 10x + 25 = 0
<=> ( x + y )2 + ( x - 5 )2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=5\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-5\\x=5\end{cases}}\)
c) Xem lại đề