Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
\(-20x^2+6x+20x^2+5x=25\)
\(\Rightarrow6x+5x=25\)
\(\Rightarrow11x=25\)
\(\Rightarrow x=\dfrac{25}{11}\)
b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
\(5y-2y^2+2y^2-2y=15\)
\(\Rightarrow5y-2y=15\)
\(\Rightarrow3y=15\)
\(\Rightarrow y=5\)
c)\(x\left(x+1\right)-\left(x+1\right)=35\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)
\(\Rightarrow x^2-1=35\)
\(\Rightarrow x^2=36\)
\(\Rightarrow x=6;x=-6\)
d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)
\(x^3+x^2+x-x^3+x=0\)
\(\Rightarrow x^2+2x=0\)
\(\Rightarrow x\left(x+2\right)=0\)
\(\Rightarrow x=0;x=0-2=-2\)
Vậy \(x=0;x=-2\)
\(A=\left(5x-2y\right)\left(5x+2y\right)\)
\(A=\left(5x\right)^2-\left(2y\right)^2\)
\(A=25x^2-4y^2\)
\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)
\(A=25.4-4.100\)
\(A=100-400\)
\(A=300\)
\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)
\(B=\left(2x\right)^3-5^3\)
\(B=8x^3-125\)
\(B=8.8-125\)
\(B=64-125\)
\(B=-61\)
\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)
\(C=\left(3x\right)^2+\left(2y\right)^2\)
\(C=9x^2+4y^2\)
\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)
\(C=9+4.\dfrac{1}{4}\)
\(C=9+1\)
\(C=10\)
\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
\(=\frac{\left(x^2-36\right).3}{\left(2x+10\right)\left(6-x\right)}\)
\(=\frac{3\left(x+6\right)\left(x-6\right)}{\left(2x+10\right)\left(6-x\right)}\)
\(=-\frac{3\left(x+6\right)\left(x-6\right)}{2\left(x+5\right)\left(x-6\right)}\)
\(=-\frac{3\left(x+6\right)}{2\left(x+5\right)}\)
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
Bài 1:
a) x( x - y) + x - y = (x - y)(x + 1)
b) 2x + 2y - x( x + y) = ( 2x + 2y) - x( x + y)
= 2( x + y ) - x( x + y ) = ( x + y )(2 - x )
c) 5x2 - 5xy - 10x + 10y = ( 5x2 - 5xy ) - ( 10x - 10y)
= 5x( x - y ) - 10( x - y ) = ( x - y )(5x - 10 )
= 5( x - y )( x - 2 )
d) 4x2 + 6xy - 3x - 6y = Mình ko làm được!!! bạn chép có sai đề không
Bài 2:
x ( 2x - 7) - 4x + 14 = 0
⇒ 2x2 - 7x - 4x + 14 = 0 ⇒ ( 2x2 - 4x ) - ( 7x - 14 ) = 0
⇒ 2x( x - 2 ) - 7(x - 2) = 0
⇒ (x - 2)(2x - 7) = 0
⇒ \(\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy x = 2; x = \(\dfrac{7}{2}\)
a, \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)
\(\Rightarrow-20x^2+6x+20x^2+5x=25\)
\(\Rightarrow11x=25\Rightarrow x=\dfrac{25}{11}\)
b, \(y\left(5-2y\right)+2y\left(y-1\right)=15\)
\(\Rightarrow5y-2y^2+2y^2-2y=15\)
\(\Rightarrow3y=15\Rightarrow y=5\)
c, \(x\left(x+1\right)-\left(x+1\right)=35\)
\(\Rightarrow\left(x+1\right).\left(x-1\right)=35\)
\(\Rightarrow x^2-1=35\Rightarrow x^2=36\Rightarrow x=\pm6\)
Chúc bạn học tốt!!!
cảm ơn bạn