K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

a, \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)

\(\Rightarrow-20x^2+6x+20x^2+5x=25\)

\(\Rightarrow11x=25\Rightarrow x=\dfrac{25}{11}\)

b, \(y\left(5-2y\right)+2y\left(y-1\right)=15\)

\(\Rightarrow5y-2y^2+2y^2-2y=15\)

\(\Rightarrow3y=15\Rightarrow y=5\)

c, \(x\left(x+1\right)-\left(x+1\right)=35\)

\(\Rightarrow\left(x+1\right).\left(x-1\right)=35\)

\(\Rightarrow x^2-1=35\Rightarrow x^2=36\Rightarrow x=\pm6\)

Chúc bạn học tốt!!!

11 tháng 7 2017

cảm ơn bạn

13 tháng 7 2017

a) \(-2x\left(10x-3\right)+5x\left(4x+1\right)=25\)

\(-20x^2+6x+20x^2+5x=25\)

\(\Rightarrow6x+5x=25\)

\(\Rightarrow11x=25\)

\(\Rightarrow x=\dfrac{25}{11}\)

b) \(y\left(5-2y\right)+2y\left(y-1\right)=15\)

\(5y-2y^2+2y^2-2y=15\)

\(\Rightarrow5y-2y=15\)

\(\Rightarrow3y=15\)

\(\Rightarrow y=5\)

c)\(x\left(x+1\right)-\left(x+1\right)=35\)

\(\Rightarrow\left(x-1\right)\left(x+1\right)=35\)

\(\Rightarrow x^2-1=35\)

\(\Rightarrow x^2=36\)

\(\Rightarrow x=6;x=-6\)

d)\(x\left(x^2+x+1\right)-x^2\left(x+1\right)=0\)

\(x^3+x^2+x-x^3+x=0\)

\(\Rightarrow x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

\(\Rightarrow x=0;x=0-2=-2\)

Vậy \(x=0;x=-2\)

27 tháng 7 2018

\(A=\left(5x-2y\right)\left(5x+2y\right)\)

\(A=\left(5x\right)^2-\left(2y\right)^2\)

\(A=25x^2-4y^2\)

\(A=25.\left(-2\right)^2-4\left(-10\right)^2\)

\(A=25.4-4.100\)

\(A=100-400\)

\(A=300\)

\(B=\left(2x-5\right)\left(4x^2+10x+25\right)\)

\(B=\left(2x\right)^3-5^3\)

\(B=8x^3-125\)

\(B=8.8-125\)

\(B=64-125\)

\(B=-61\)

\(C=\left(3x+2y\right)\left(9x^2-6xy+4y^2\right)\)

\(C=\left(3x\right)^2+\left(2y\right)^2\)

\(C=9x^2+4y^2\)

\(C=9\left(-1\right)^2+4\left(\dfrac{1}{2}\right)^2\)

\(C=9+4.\dfrac{1}{4}\)

\(C=9+1\)

\(C=10\)

nhìn mà mù mắt , rắc rối vl

29 tháng 12 2019

\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)

\(=\frac{\left(x^2-36\right).3}{\left(2x+10\right)\left(6-x\right)}\)

\(=\frac{3\left(x+6\right)\left(x-6\right)}{\left(2x+10\right)\left(6-x\right)}\)

\(=-\frac{3\left(x+6\right)\left(x-6\right)}{2\left(x+5\right)\left(x-6\right)}\)

\(=-\frac{3\left(x+6\right)}{2\left(x+5\right)}\)

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

15 tháng 10 2018

Bài 1:

a) x( x - y) + x - y = (x - y)(x + 1)

b) 2x + 2y - x( x + y) = ( 2x + 2y) - x( x + y)

= 2( x + y ) - x( x + y ) = ( x + y )(2 - x )

c) 5x2 - 5xy - 10x + 10y = ( 5x2 - 5xy ) - ( 10x - 10y)

= 5x( x - y ) - 10( x - y ) = ( x - y )(5x - 10 )

= 5( x - y )( x - 2 )

d) 4x2 + 6xy - 3x - 6y = Mình ko làm được!!! bạn chép có sai đề không

15 tháng 10 2018

Bài 2:

x ( 2x - 7) - 4x + 14 = 0

⇒ 2x2 - 7x - 4x + 14 = 0 ⇒ ( 2x2 - 4x ) - ( 7x - 14 ) = 0

⇒ 2x( x - 2 ) - 7(x - 2) = 0

⇒ (x - 2)(2x - 7) = 0

\(\left[{}\begin{matrix}x-2=0\\2x-7=0\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=\dfrac{7}{2}\end{matrix}\right.\)

Vậy x = 2; x = \(\dfrac{7}{2}\)