Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(5x-5y+x\left(x-y\right)\)
\(=5\left(x-y\right)+x\left(x-y\right)\)
\(=\left(x-y\right)\left(x+5\right)\)
2) \(x^2+4x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
3) \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
4) \(x\left(x-5\right)-3x+15\)
\(=x\left(x-5\right)-3\left(x-5\right)\)
\(=\left(x-5\right)\left(x-3\right)\)
5) \(y^2-x^2+2x-1\)
\(=y^2-\left(x^2-2x+1\right)\)
\(=y^2-\left(x-1\right)^2\)
\(=\left(x+y-1\right)\left(y-x+1\right)\)
\(1.\left(x-y\right)\left(x+5\right)\)
\(2.\left(x+1\right)\left(x+3\right)\)
\(3.\left(x-y-z\right)\left(x-y+z\right)\)
\(4.\left(x-3\right)\left(x-5\right)\)
\(5.\left(y-x+1\right)\left(y+x+1\right)\)
\(7.\left(x+1\right)\left(x-2\right)^2\)
\(8.\left(x-5\right)\left(x+3\right)\)
\(10.\left(y+1\right)\left(2x+z\right)\)
1)
5x - 5y + x ( x - y ) = (x-y)(5+x)
2)
x2+4x+3=x2+x+3x+3=(x+1)(x+3)
3)x2-2xy+y2-z2=\(\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
4)\(x\left(x-5\right)-3x+15=\left(x-3\right)\left(x-5\right)\)
Bài 2:
\(A=x^2+4y^2-2x+10-4xy-4y\)
\(=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)+10\)
\(=\left(x+2y\right)^2-2\left(x+2y\right)+10\)
Thay x + 2y = 5 vào biểu thức A ta được: \(A=5^2-2.5+10=25\)
\(B=\left(x^2+4xy+4y^2\right)-2\left(x+2y\right)\left(y-1\right)+y^2-2y+1\)
\(=x^2+4xy+4y^2-2xy+2x-4y^2+4y+y^2-2y+1\)
\(=x^2+2xy+y^2+2x+2y+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1\)
Thay x + y = 5 vào biểu thức B ta được: \(B=5^2+2.5+1=25+10+1=36\)
\(C=x^2-y^2-4x=\left(x^2-4x+4\right)-y^2-4\)
\(=\left(x-2\right)^2-y^2-4\) \(=\left(x-y-2\right)\left(x-2+y\right)-4\)
Thay x + y = 2 vào C ta được: \(C=\left(x-2-y\right)\left(2-2\right)-4=0-4=-4\)
\(D=x^2+y^2+2xy-4x-4y-3\)
\(=\left(x+y\right)^2-4\left(x+y\right)-3\) Thay x + y = 4 vào D ta được:
\(D=4^2-4.4-3=16-16-3=-3\)
Bài 3:
a) \(N=-9x^2+12x-5=-\left(9x^2-12x+4\right)-1\)
\(=-\left(3x-2\right)^2-1\)
Do \(\left(3x-2\right)^2\ge0\) nên \(-\left(3x-2\right)^2-1< 0\)
Vậy N < 0
b) ghi đề cẩn thận lại đi, mk k hiểu
nhìn mà mù mắt , rắc rối vl
\(\frac{x^2-36}{2x+10}.\frac{3}{6-x}\)
\(=\frac{\left(x^2-36\right).3}{\left(2x+10\right)\left(6-x\right)}\)
\(=\frac{3\left(x+6\right)\left(x-6\right)}{\left(2x+10\right)\left(6-x\right)}\)
\(=-\frac{3\left(x+6\right)\left(x-6\right)}{2\left(x+5\right)\left(x-6\right)}\)
\(=-\frac{3\left(x+6\right)}{2\left(x+5\right)}\)