Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{3x-5}{9}\right)^{2018}>=0\forall x\)
\(\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall y\)
Do đó: \(\left(\dfrac{3x-5}{9}\right)^{2018}+\left(\dfrac{3y+0,4}{3}\right)^{2020}>=0\forall x,y\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}\dfrac{3x-5}{9}=0\\\dfrac{3y+0,4}{3}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-5=0\\3y+0,4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{3}\\y=-\dfrac{0.4}{3}=-\dfrac{2}{15}\end{matrix}\right.\)
\(\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}=0\)
Ta có : \(\hept{\begin{cases}\left(\frac{3x-5}{9}\right)^{2018}\ge0\forall x\\\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall y\end{cases}}\Rightarrow\left(\frac{3x-5}{9}\right)^{2018}+\left(\frac{3y+0,4}{3}\right)^{2020}\ge0\forall x,y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{3x-5}{9}=0\\\frac{3y+0,4}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x-5=0\\3y+0,4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{2}{15}\end{cases}}\)
\(\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}=0\)
Vì \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Dấu " = " xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(x+1\right)^{2020}=0\\\left(2-3y\right)^{2022}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\3y=2\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
( x + 1 )2020 + ( 2 - 3y )2022 = 0
Ta có \(\hept{\begin{cases}\left(x+1\right)^{2020}\ge0\forall x\\\left(2-3y\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left(x+1\right)^{2020}+\left(2-3y\right)^{2022}\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+1=0\\2-3y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=\frac{2}{3}\end{cases}}\)
Vậy x = -1 ; y = 2/3
a)3^x+1=9^x
3^x+1=3.3^x
3^x+1=3^x+1
=>x thuộc TH Z
b)2^3.x+2=4^x+5
2^3x+2=2^2.(x+5)
2^3x+2=2^2x+10
2^3x=2^2x+8
3x-2x=8
=>x=8
c)3^2x-1=243
3^2x=243.3
3^2x=729
3^2x=3^6
=>2x=6
x=6:2=3
chúc bạn học tốt nha
(x-5)^2018>=0
y+1)^2018>=0
=>(x-5)^2018+(y+1)^2018>=0
dấu = xảy ra <=>x=5;y=-1
\(\left(2x+4\right)^{2024}+\left(\left|3y-9\right|\right)^{2023}=0\) (*)
Ta có: \(\left(2x+4\right)^{2024}\ge0\forall x\) (vì có số mũ chẵn) (1)
\(\left(\left|3y-9\right|\right)^{2023}\ge0\forall y\) (vì giá trị tuyệt đối luôn ≥0) (2)
Từ (1) và (2) ta có:
\(\Rightarrow\left\{{}\begin{matrix}2x+4=0\\3y-9=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)
Vậy: ...
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
\(\left(3x-\frac{5}{9}\right)^{2018}+\left(3y+\frac{\frac{4}{10}}{9}\right)^{2020}=0\)(*)
Vì \(\left(3x-\frac{5}{9}\right)^{2018}\ge0\forall x;\left(3y+\frac{18}{5}\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(3x-\frac{5}{9}\right)^{2018}+\left(3y+\frac{18}{5}\right)^{2020}\ge0\forall x;y\)
lại có (*)
Đẳng thức xảy ra khi \(x=\frac{5}{9}:3=\frac{5}{27};y=-\frac{18}{5}:3=-\frac{18}{15}=-\frac{6}{5}\)