Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(x\left(x-2\right)\left(x+2\right)-\left(x+2\right)\left(x^2-2x+4\right)=4\)
\(\Leftrightarrow x\left(x^2-4\right)-\left(x^3+8\right)=4\)
\(\Leftrightarrow x^3-4x-x^3-8=4\)
\(\Leftrightarrow-4x-8=4\)
\(\Leftrightarrow-4x=12\)
\(\Leftrightarrow x=-3\)
Vậy \(x=-3\)
2x2 + 2y2 -2xy+2x+2y+2=0
<=>x2-2xy+y2+x2+2x+1+y2+2y+1=0
<=>(x-y)2+(x+1)2+(y+1)2=0
<=>x=-1;y=-1
a, xy-x-2x-1=0
x(y-1-2)-1=0
x(y-3)-1=0
+x=0
+(y-3)-1=0
y-3=1
y=4
Vậy : x=0 và y=4
b, x^2-2xy+x-2y+2=0
a) \(2x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)
Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)
Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)
b)\(x^2+3y^2+2xy-2y+1=0\)
\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)
nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Mà\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)
nên pt vô nghiệm
Đối với dạng này thì em biến đổi 1 vế thành tích các đa thức còn 1 vế là số nguyên, sau đó tìm ước số nguyên, cho các đa thức bằng ước đó là tìm được .
2x2 + 2xy - 3x - y = 5
( 2x2 + 2xy ) - x - y - 2x + 1 = 6
2x( x + y) - ( x + y) - (2x -1) = 6
( x+y) ( 2x - 1) - ( 2x -1) = 6
(2x -1) ( x + y - 1) = 6
vì 6 = 2.3 => Ư(6) = { -6; -3; - 2; -1; 1; 2; 3; 6}
Nên với x, y \(\in\) Z thì ( 2x-1)(x+y -1) = 6 khi và chỉ khi :
th1 : \(\left\{{}\begin{matrix}2x-1=-1\\x+y-1=-6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=0\\y=-5\end{matrix}\right.\)
th2: \(\left\{{}\begin{matrix}2x-1=1\\x+y-1=6\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1\\y=6\end{matrix}\right.\)
th3 : \(\left\{{}\begin{matrix}2x-1=-2\\x+y-1=-3\end{matrix}\right.\) => x = -1/2 (loại)
th4 : \(\left\{{}\begin{matrix}2x-1=2\\x+y-1=6\end{matrix}\right.\) => x = 3/2 (loại)
th5 : \(\left\{{}\begin{matrix}2x-1=-3\\x+y-1=-2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\)
th6 : \(\left\{{}\begin{matrix}2x-1=3\\x+y-1=2\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
th7 : \(\left\{{}\begin{matrix}2x-1=-6\\x+y-1=-1\end{matrix}\right.\) => x = -5/2 (loại)
th8 : \(\left\{{}\begin{matrix}2x-1=6\\x+y-1=1\end{matrix}\right.\) => x 7/2 (loại)
Kết luận các cặp giá trị nguyên của x; y thỏa mãn đề bài là:
(x; y) =(0; -5); (1; 6); ( -1; 0); (2; 1)
ở th4 mình viết nhầm chút nhé . em sửa lại thành cho đúng em nhé
\(\left\{{}\begin{matrix}2x-1=2\\x+y-1=3\end{matrix}\right.\)
1) theo đề bài ta có:\(\left(2^x-8\right)^3+\left(4^x+13\right)^3+\left(-4^x-2^x-5\right)^3=0\)
Đặt 2^x-8=a;4^x+13=b; -4^x-2^x-5=c
=> a+b+c=0=> a^3+b^3+c^3=3abc=0
=> 3(2^x-8)(4^x+13)(-4^x-2^x-5)=0
=> 2^x-8=0;4^x+13=0;-4^x-2^x-5=0
tìm được x=3
2)ta có\(x^2-2xy+2y^2-2x+6y+5=0\)
<=>\(\left(x^2+y^2+1-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
<=>\(\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
<=> (x-y-1)^2=0 và (y+2)^2=0
=> x=-1;y=-2
\(x^2+y^2+2xy+2y-2x+5=0\Rightarrow\left(x+y\right)^2+2y-2x+5=0\)
x2 - 2x - 11 = y2
<=> (x2 - 2x + 1) - y2 = 12
<=> (x - 1)2 - y2 = 12
<=> (x + y - 1)(x - y - 1) = 12
Lập bảng xét các trường hợp
x - y - 1 | 1 | 12 | -1 | -12 | 2 | 6 | -2 | -6 | 3 | 4 | -3 | -4 |
x + y - 1 | 12 | 1 | -12 | -1 | 6 | 2 | -6 | -2 | 4 | 3 | -4 | -3 |
x | 7,5(loại) | 7,5(loại) | -5,5(loại) | -5,5(loại) | 5 | 5 | -3 | -3 | 4,5(loại) | 4,5(loại) | -2,5(loại) | -2,5 (loại) |
y | | | | | | | | | 2 | -2 | -2 | 2 | | | | | | | | |
Vậy các cặp (x;y) thỏa là (5;2) ; (5 ; -2) ; (-3; -2) ; (-3 ; 2)