Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xin lỗi mình viết nhầm cho gửi lại câu hỏi!
CHO \(A=\left(\left(\frac{x+7}{x+9}+\frac{x+7}{x^2+81-18x}+\frac{x+5}{x^2-81}\right)\left(\frac{x-9}{x+3}\right)^2\right)^{ }:\left(\frac{x+7}{x+3}\right)\)
a) Rút gọn A
b) Tìm số nguyên x để A nguyên
ta có pt tương đương:
\(9x^2-18x+9+y^2-6y+9+2z^2+4z+2=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-3=0\\z+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
Vậy x=1 ; y=3 ; z=-1
\(9x^2-y^2+2z^2-18x+4z-6y+20=0\)
cái này giống pt 1 mặt cầu ghe:>
\(a,x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\\ \Leftrightarrow x^2+5x-x^2-x+6=0\Leftrightarrow4x=-6\\ \Leftrightarrow x=-\dfrac{3}{2}\)
\(b,2x^3-18x=0\\ \Leftrightarrow2x\left(x^2-9\right)=0\\ \Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
a: Ta có: \(x\left(x+5\right)-\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2+5x-x^2-3x+2x+6=0\)
\(\Leftrightarrow7x=-6\)
hay \(x=-\dfrac{6}{7}\)
b: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
Bài 1 : \(x^2+2x+1-y^2=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
Bài 2 : \(10123^2-123^2=\left(10123-123\right)\left(10123+123\right)\)
\(=10000.10246=102460000\)
Bài 3 : \(x^2-18x=81\Leftrightarrow x^2-18x-81=0\)
\(\Leftrightarrow\left(x-9\right)^2-162=0\Leftrightarrow x=\frac{18\pm8\sqrt{2}}{2}=9\pm9\sqrt{2}\)
\(x^2-18x+81=0 \)
\(\Leftrightarrow x^2-9x-9x+81=0\)
\(\Leftrightarrow\left(x^2-9x\right)-\left(9x-81\right)=0\)
\(\Leftrightarrow x\left(x-9\right)-9\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x-9\right)^2=0\)
\(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Trả lời:
\(x^2-18x+81=0\)
\(\Leftrightarrow x^2-2.x.9+9^2=0\)
\(\Leftrightarrow\left(x-9\right)^2=0\)
\(\Leftrightarrow x-9=0\)
\(\Leftrightarrow x=9\)
Vậy x = 9 là nghiệm của pt.