Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{11-10}{10.11}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(=1-\frac{1}{11}=\frac{10}{11}\)
Phương trình ban đầu tương đương với:
\(10x+\frac{10}{11}=11x\)
\(\Leftrightarrow x=\frac{10}{11}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0\left|x+\frac{1}{6}\right|\ge0;...;\left|x+\frac{1}{110}\ge0\right|\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{100}\right|\ge0\)
\(\Rightarrow11x\ge0\Rightarrow x\ge0\)
\(\Rightarrow x+\frac{1}{2}>0;x+\frac{1}{6}>0;...;x+\frac{1}{100}>0\)
\(\Rightarrow\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};...;\left|x+\frac{1}{100}\right|=x+\frac{1}{110}\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=11x\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
\(\Rightarrow10x+\frac{10}{11}=11x\)
\(\Rightarrow x=\frac{10}{11}\)
vì |x+1/2| ; |x+1/6| ; ............ ; |x+110| lớn hơn hoặc bằng 0=> 11x lớn hớn hoặc bằng 0=> x lớn hớn hoặc bằng 0
=>x+1/2 ; x+1/6 ; ............ ; x+110 lớn hơn hoặc bằng 0
ta có: x+1/2+x+1/6+x+1/12+...+x+1/110=11x
(x+x+...+x)+(1/1.2+1/2.3+1/3.4+...+1/10.11)=11x
10x+(1-1/10)=11x
x= 1/9
à mình bỏ dấu" | " vì khi mà lớn hơn hoặc bằng 1 rồi thfi bỏ ra nó vẫn có giá trị bằng giá trị trị lúc ban đầu
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+...+\left|x+\dfrac{1}{110}\right|=11x\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow10x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\right)=11x\)
\(\Leftrightarrow x=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\left(tm\right)\)
=> 12. |x - 2| + |x - 2|2 = 11.|x - 2|
=> |x - 2| + | x - 2|2 = 0
=> |x - 2|. (1 + |x - 2|) = 0
=> |x - 2| = 0 (Vì 1 + |x - 2| > 1 > 0)
=> x - 2 = 0 => x = 2
Vậy x = 2
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|=11x\)
\(\Leftrightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...\left|x+\frac{1}{110}\right|\ge0\)
\(\rightarrow11x\ge0\rightarrow x\ge0\)
\(\text{Ta có:}\)
\(x+\frac{1}{2}+...+x+\frac{1}{110}=11x\)
\(\rightarrow10x+\frac{10}{11}=11x\)
\(\rightarrow x=\frac{10}{11}\)
x3+2x2-11x-12=0
<=>(x3+x2-12x)+(x2+x-12)=0
<=>(x+1)(x2+x-12)=0
<=>(x+1)(x2+4x-3x-12)=0
<=>(x+1)(x+4)(x-3)=0
<=>x+1=0 hoặc x+4=0 hoặc x-3=0
<=>x=-1 hoặc x=-4 hoặc x=3
Vậy x={-4;-1;3}
x^3 + 2x^2 - 11x - 12 = 0
x^3 - 3x^2 + 5x^2 - 15x + 4x - 12 = 0
x^2 ( x- 3) + 5x( x -3) + 4( x - 3) = 0
( x - 3 )( x^2 + 5x + 4) = 0
( x - 3) ( x^2 + x + 4x + 4) = 0
( x - 3) [ x( x + 1) + 4 (x + 1) ] = 0
( x - 3 )( x + 4 )( x + 1) = 0
=> x - 3 = 0 hoặc x + 4 = 0 hoặc x + 1 = 0
=> x= 3 hoặc x = -4 ; x = -1
\(\left|x+1\right|+\left|x+2\right|+...+\left|x+12\right|=11x\)
Do \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;.....;\left|x+12\right|\ge0\)
\(\Rightarrow11x\ge0\Leftrightarrow x\ge0\)
Khi đó \(x+1>0;x+2>0;...;x+12>0\). Vậy phương trình trở thành:
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+12\right)=11x\)
\(12x+\left(1+2+3+...+12\right)=11x\)
\(12x+\frac{\left[\left(12-1\right):1+1\right].\left(12+1\right)}{2}=11x\)
\(12x+78=11x\)
\(11x-12x=78\)
\(-x=78\)
\(\Rightarrow x=-78\left(l\right)\)
Vậy phương trình vô nghiệm.