K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

\(x-2=\left(x-2\right)^2\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\in\left\{2,3\right\}\)

20 tháng 10 2021

\(\left(x^2+3\right)\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^2+4\right)=0\)

\(\Rightarrow x=-1\)

27 tháng 9 2020

(x + 2)2 - (x - 1)(x + 1)  = 13

=> (x2 + 2.x.2 + 22 )- (x2 - 1) = 13   ( dùng hẳng đẳng thức số 1 và số 3)

=> x2 + 4x + 4 - x2 + 1 = 13

=> (x2 - x2) + 4x + 4 + 1 = 13

=> 4x + 4 + 1 = 13

=> 4x + 5 = 13

=> 4x = 8

=> x = 2

Vậy x = 2

(x + 1)3 + x(x - 1) = x3 + 4x2

=> x3 + 3.x2.1 + 3.x.12 + 13 + x2 - x - x3 - 4x2 = 0

=> x+ 3x2 + 3x + 1 + x2 - x - x3 - 4x2 = 0

=> (x3 - x3) + (3x2 + x2 - 4x2) + (3x - x) + 1 = 0

=> 2x + 1 = 0 => 2x = -1 => x = -1/2

(x + 1)(x + 2) - (x + 3)2 = 24

=> x(x + 2) + 1(x + 2) - (x2 + 2.x.3 + 32) = 24

=> x2 + 2x + x + 2 - (x2 + 6x + 9) = 24

=> x2 + 2x + x + 2 - x2 - 6x - 9 = 24

=> (x2 - x2) + (2x + x - 6x) + (2 - 9) = 24

=> -3x - 7 = 24

=> -3x = 31

=> x = -31/3

(x - 1)(x2 + x + 1) + 2x = x3 + 5

Dựa vào hằng đẳng thức : (A - B)(A2 + AB + B2) = A3 - B3

=> (x - 1)(x2 + x.1 + 12) = x3 - 13  = x3 - 1

=> x3 - 1 + 2x - x3 - 5 = 0

=> (x3 - x3) - 1 + 2x - 5 = 0

=> -1 + 2x - 5 = 0

=> -1 + 2x = 5

=> 2x = 6

=> x = 3

30 tháng 9 2020

\(\left(x+2\right)^2-\left(x-1\right)\left(x+1\right)=13\)

\(\left(x^2+4x+4\right)-\left(x^2-1\right)=13\)

\(x^2+4x+4-x^2+1=13\)

\(4x+5=13\)

\(4x=8\)

\(x=2\)

b,\(\left(x+1\right)^3+x\left(x-1\right)=x^3+4x^2\)

\(x^3+3x^2+3x+1+x^2-x-x^3-4x^2=0\)

\(2x+1=0\)

\(2x=-1\)

\(x=-\frac{1}{2}\)

18 tháng 8 2021

3(x + 1)2 - 3x(x + 2) = 1

<=> 3x2 + 6x + 3 - 3x2 - 6x = 1

<=> 3 = 1 (vô lí)

Vậy phương trình vô nghiệm.

(x - 1)3 - (x + 3)(x2 - 3x + 9) + 3(x2 - 4) = 2

<=> x3 - 3x2 + 3x - 1 - x3 - 27 + 3x2 - 12 = 2

<=> 3x - 40 = 2

<=> 3x = 42

<=> x = 14

Vậy S = { 14 }.

(x + 2)(x2 - 2x + 4) - x(x2 + 2) = 15

<=> x3 + 8 - x3 - 2x = 15

<=> - 2x + 8 = 15

<=> - 2x = 7

<=> x = - 7/2

Vậy S = { - 7/2 }.

10 tháng 7 2018

\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)

\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)

\(12x^2-48-12x^2-36x-27\) \(=52\)

\(-36x-75=52\)

\(-36x=127\)

\(x=\frac{-127}{36}\)

\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)

\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)

\(4x^2+4x-1-4x^2+4+2x=5\)

\(6x+3=5\)

\(6x=2\)

\(x=3\)

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)

\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)

\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)

\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)

\(x^3-2-x^3-3x^2+9x+27=15\)

\(-3x^2+9x+25=15\)

\(-3x^2+9x+10=0\)

\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)

\(x=\frac{9+\sqrt{201}}{6}\)

các câu còn lại tương tự

26 tháng 6 2016

\(a.x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)

\(\Leftrightarrow x\left(x^2-5^2\right)-\left(x^3+2^3\right)=3\)

\(\Leftrightarrow x^3-25x-x^3-8=3\)

\(\Leftrightarrow x^3-x^3-25x=8+3\)

\(\Leftrightarrow x=\frac{11}{-25}\)

Vậy x có nghiệm là \(\frac{-11}{25}.\)

\(\)

21 tháng 9 2020

P/S : Câu 2,3 kết quả bằng bao nhiêu mới tìm được x ?

1.\(\left(2x-7\right)^2-4\left(x-3\right)=5\)

=> \(\left(2x\right)^2-2\cdot2x\cdot7+7^2-4x+12=5\)

=> \(4x^2-28x+49-4x+12=5\)

=> \(4x^2-32x+61=5\)

=> \(4x^2-32x+61-5=0\)

=> \(4x^2-32x+56=0\)

=> \(4\left(x^2-8x+14\right)=0\)

=> \(x^2-8x+14=0\)

=> \(\orbr{\begin{cases}x=4-\sqrt{2}\\x=\sqrt{2}+4\end{cases}}\)

4.\(\left(3x-1\right)^2-6\left(x-1\right)\left(x+1\right)-3x\left(x-2\right)=7\)

=> \(\left(3x\right)^2-2\cdot3x\cdot1+1^2-6\left(x^2-1\right)-3x^2+6x=7\)

=> \(9x^2-6x+1-6x^2+6-3x^2+6x=7\)

=> \(\left(9x^2-6x^2-3x^2\right)+\left(-6x+6x\right)+\left(1+6\right)=7\)

=> 7 = 7(đúng)

5. \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

=> \(x^2+2\cdot x\cdot3+3^2-x\left(x+8\right)+4\left(x+8\right)=1\)

=> x2 + 6x + 9 - x2 - 8x + 4x + 32 = 1

=> (x2 - x2) + (6x - 8x + 4x) + (9 + 32) = 1

=> 2x + 41 = 1

=> 2x = -40

=> x = -20

15 tháng 7 2020

a) \(2(x-1)\)2 + \((x + 3)\)2 = \(3(x-2)(x+1)\)

\(2x^2-4x+2+x^2+6x+9=3x^2+3x-6x-6\)

\(2x^2+x^2-3x^2-4x+6x-3x+6x=-2-9-6\)

\(5x=-17\)

\(x=\frac{-17}{5}\)

b: \(\Leftrightarrow x^2+4x+4-2x+6-x^2-2x-1=0\)

=>9=0(vô lý)

c: \(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+16x+32-22x-27\)

=>\(2x^2-6x+5-2x^2+6x-5=0\)

=>0x=0(luôn đúng)