Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
a) \(\sqrt{3}x-\sqrt{27}=\sqrt{343}\)
\(\Leftrightarrow\left(x-3\right)\sqrt{3}=7\sqrt{7}\)
\(\Leftrightarrow x-3=\frac{7\sqrt{21}}{3}\)
\(\Rightarrow x=\frac{9+7\sqrt{21}}{3}\)
b) \(\sqrt{2}x^2-\sqrt{12}=0\)
\(\Leftrightarrow\left(x^2-\sqrt{6}\right)\sqrt{2}=0\)
\(\Leftrightarrow x^2-\sqrt{6}=0\)
\(\Leftrightarrow x^2=\sqrt{6}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\sqrt{6}}\\x=-\sqrt{\sqrt{6}}\end{cases}}\)
Đặt Q = \(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\)
\(^{Q^3}\)= 3 + \(\sqrt{\frac{x}{27}}\)+3 - \(\sqrt{\frac{x}{27}}\)+3(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)*\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\) )(\(\sqrt[3]{3+\sqrt{\frac{x}{27}}}\)+\(\sqrt[3]{3-\sqrt{\frac{x}{27}}}\))
\(Q^3\)= 6 +3 \(\sqrt[3]{\left(3+\sqrt{\frac{x}{27}}\right)\left(3-\sqrt{\frac{x}{27}}\right)}\)\(Q\)
\(Q^3\)= 6+ 3\(\sqrt[3]{\left(3^2-\left(\sqrt{\frac{x}{27}}\right)^2\right)}\)\(Q\)
\(Q^3\)= 6 + 3 \(\sqrt[3]{9-\frac{x}{27}}\)\(Q\)
\(Q^3\)= 6 + 3\(\sqrt[3]{\frac{243-x}{27}}\)\(Q\)
\(Q^3\)= 6 + \(\sqrt[3]{243-x}\)\(Q\)
\(Q\)( \(Q^2\)- \(\sqrt[3]{243-x}\)) =6
\(Q\)=\(\frac{6}{Q^2-\sqrt[3]{243-x}}\)
Vì Q \(\in\)Z nên \(Q^2\)\(\in\)\(Z\), 6\(\in\)\(Z\) nên \(\sqrt[3]{243-x}\)\(\in\)\(Z\); \(Q^2\)- \(\sqrt[3]{243-x}\)\(\in\)\(Ư\left(6\right)\)=\(\left\{+-1;+-2;+-3;+-6\right\}\)
Suy ra 243 -x \(\in\)+ -1; + -8 ;+-27;....
\(Q^2\)-\(\sqrt[3]{243-x}\)= 1 \(\Rightarrow\)\(Q^2\)= 1+\(\sqrt[3]{243-x}\)Vì Q\(\in\)Z nên \(\sqrt[3]{243-x}\)= 8
Suy ra x=241 hoặc x=245
Vậy......
Không biết mk lm đúng hay sai mong mấy bn đóng góp ý kiến . Cảm ơn nhiều ạ
\(\sqrt{x+3}\) + \(\sqrt{9x+27}\) - \(\sqrt{4x-12}\) = 10 đk \(x+3\) ≥ 0 ⇒ \(x\) ≥ -3
\(\sqrt{x+3}\) + \(\sqrt{9\left(x+3\right)}\) - \(\sqrt{4\left(x+3\right)}\) = 10
\(\sqrt{x+3}\) + 3\(\sqrt{x+3}\) - 2\(\sqrt{x+3}\) = 10
(1 + 3 - 2)\(\sqrt{x+3}\) = 10
2\(\sqrt{x+3}\) = 10
\(\sqrt{x+3}\) = 10: 2
\(\sqrt{x+3}\) = 5
\(x+3\) = 10
\(x\) = 10 - 3
\(x\) = 7 ( thỏa mãn)
Vậy \(x\) = 7
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)
a: \(A=3+\left(-2\right)\cdot\sqrt{3}+3\cdot\sqrt{3}-2-\sqrt{3}\)
\(=3-2=1\)
\(B=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b: B<A
=>B-1<0
=>\(\dfrac{\sqrt{x}-1-\sqrt{x}}{\sqrt{x}}< 0\)
=>-1/căn x<0
=>căn x>0
=>x>0 và x<>1
Lời giải:
a. ĐKXĐ: $x\geq -9$
PT $\Leftrightarrow x+9=7^2=49$
$\Leftrightarrow x=40$ (tm)
b. ĐKXĐ: $x\geq \frac{-3}{2}$
PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$
$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$
$\Leftrgihtarrow 3\sqrt{2x+3}=15$
$\Leftrightarrow \sqrt{2x+3}=5$
$\Leftrightarrow 2x+3=25$
$\Leftrightarrow x=11$ (tm)
c.
PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2}{3}\)
d. ĐKXĐ: $x\geq 1$
PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)
\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)
\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)
\(\Leftrightarrow -1=9\) (vô lý)
Vậy pt vô nghiệm.
a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)
\(=-\frac{2}{3}\sqrt{15}\)
b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)
\(=\frac{9}{2}\sqrt{7}\)
c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)
\(=9\sqrt{3}\)
Bài làm:
Ta có: \(\sqrt{3}x-\sqrt{27}=\sqrt{343}\)
\(\Leftrightarrow\left(x-3\right)\sqrt{3}=7\sqrt{7}\)
\(\Leftrightarrow x-3=\frac{7\sqrt{21}}{3}\)
\(\Rightarrow x=\frac{9+7\sqrt{21}}{3}\)