\(\sqrt{3-2x}\)<5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{3-2x}< 5\)

\(\Leftrightarrow\left|3-2x\right|< 25\)

\(\Leftrightarrow-5< 3-2x< 5\)

\(\Leftrightarrow3-\left(-5\right)>3-\left(3-2x\right)>3-5\)

\(\Leftrightarrow8>2x>-2\)

\(\Rightarrow-1< x< 4\)

21 tháng 6 2019

c,  Để BT có nghĩa thì  \(x^2-4x+3\ge0\)

                                    \(\Leftrightarrow x^2-4x+4\ge1\)

                                    \(\Leftrightarrow\left(x-2\right)^2\ge1\)

                                    \(\Leftrightarrow\sqrt{\left(x-2\right)^2}\ge1\)

                                      \(\Leftrightarrow|x-2|\ge1\)

\(\Leftrightarrow x-2\ge1\) và   \(x-2\le-1\)

\(\Leftrightarrow x\ge3;x\le1\)

20 tháng 12 2016

\(A=2x+\sqrt{4-2x^2}=\sqrt{2}.\sqrt{2x^2}+\sqrt{4-2x^2}\)

áp dụng BĐT bunhiacopxki,ta có:

\(A^2\le\left(2+1\right)\left(2x^2+4-2x^2\right)=3.4=12\)

\(\Leftrightarrow A\le\sqrt{12}\)

dấu = xảy ra khi \(\frac{\sqrt{2}}{\sqrt{2}x}=\frac{1}{\sqrt{4-2x^2}}\Leftrightarrow4-2x^2=x^2\Leftrightarrow x=\sqrt{\frac{4}{3}}=\frac{2}{\sqrt{3}}\)

vậy Amax = \(\sqrt{12}\)khi x=\(\frac{2}{\sqrt{3}}\)

11 tháng 3 2020

a) \(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)

\(=\frac{4\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12}{x-9}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{x+3\sqrt{x}}{x-9}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}\)

\(=\frac{x-25}{x-9}\)

b) \(P=\frac{A}{B}=\frac{\frac{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}\)

\(=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)

\(\sqrt{P}< \frac{1}{3}\Rightarrow\sqrt{\frac{\sqrt{x}-5}{\sqrt{x}+3}}< \frac{1}{3}\)

\(\Rightarrow\frac{\sqrt{x}-5}{\sqrt{x}+3}< \frac{1}{9}\Leftrightarrow9\sqrt{x}-45< \sqrt{x}+3\)

\(\Leftrightarrow8\sqrt{x}< 48\Leftrightarrow\sqrt{x}< 6\Rightarrow0\le x< 36\)

11 tháng 3 2020

\(a,\)\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(b,P=\frac{A}{B}=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{\sqrt{x}+5}{\sqrt{x}-3}\)

\(=\frac{2x+3\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\left(\sqrt{x}-3\right)}{\sqrt{x}+5}=\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}\)

Để \(\sqrt{P}< \frac{1}{3}\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}< \frac{1}{3}\)

\(\Rightarrow\frac{2x+3\sqrt{x}-1}{\sqrt{x}+5}-\frac{1}{3}< 0\)

\(\Rightarrow\frac{3\left(2x+3\sqrt{x}-1\right)-\sqrt{x}-5}{3\left(\sqrt{x}+5\right)}< 0\)

\(\Rightarrow6x+9\sqrt{x}-3-\sqrt{x}-5< 0\)( do \(3\left(\sqrt{x}+5\right)>0\))

\(\Rightarrow6x-8\sqrt{x}-8< 0\Rightarrow3x-4\sqrt{x}-4< 0\)

\(\Rightarrow3x-6\sqrt{x}+2\sqrt{x}-4< 0\)

\(\Rightarrow3\sqrt{x}\left(\sqrt{x}-2\right)+2\left(\sqrt{x}-2\right)< 0\)

\(\Rightarrow\left(\sqrt{x}-2\right)\left(3\sqrt{x}+2\right)< 0\)

Vì \(3\sqrt{x}+2>0\Rightarrow\sqrt{x}-2< 0\)

\(\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

Vậy để \(\sqrt{P}< \frac{1}{3}\)thì \(0\le x< 4\)

12 tháng 8 2020

Đk: \(x\ge\frac{-3}{2}\)

Bất pt <=> \(2x+3+x+2+2\sqrt{2x^2+7x+6}\le1\)

<=> \(2\sqrt{2x^2+7x+6}\le-4-3x\)

<=> \(\hept{\begin{cases}-3-4x\ge0\\4\left(2x^2+7x+6\right)\le16+24x+9x^2\end{cases}}\)

<=> \(\hept{\begin{cases}x\le-\frac{3}{4}\\x^2-4x-8\ge0\end{cases}}\)

<=> \(\hept{\begin{cases}x\le-\frac{3}{4}\\\left(x-2\right)^2\ge12\end{cases}}\)

<=> \(x\le2-\sqrt{12}\)

Đối chiếu đk: \(-\frac{3}{2}\le x\le2-\sqrt{12}\)