Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a.
\(\left(\frac{1}{3}\right)^2\times27=3^x\)
\(\frac{1^2}{3^2}\times3^3=3^x\)
\(3^1=3^x\)
\(x=1\)
b.
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\frac{\left(-2\right)^6}{\left(-2\right)^x}=\left(-2\right)^5\)
\(\left(-2\right)^x=\frac{\left(-2\right)^6}{\left(-2\right)^5}\)
\(\left(-2\right)^x=-2\)
\(x=1\)
c.
\(3x^2-\frac{1}{2}x=0\)
\(x\times\left(3x-\frac{1}{2}\right)=0\)
TH1:
\(x=0\)
TH2:
\(3x-\frac{1}{2}=0\)
\(3x=\frac{1}{2}\)
\(x=\frac{1}{2}\div3\)
\(x=\frac{1}{2}\times\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy x = 0 hoặc x = 1/6
Chỗ dấu "..." bạn không cần ghi.Mình viết vậy cho dễ nhìn. Bài này có một lời giải khá độc đáo trong sách nâng cao của mình.
a) Số thừa số âm ở VT chẵn.
Mà \(x-\frac{2}{5}< x+\frac{3}{7}< x+\frac{3}{4}\) nên
\(\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{3}{7}< 0..và...x+\frac{3}{4}>0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x< -\frac{3}{7}...và...x>-\frac{3}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\-\frac{3}{4}< x< -\frac{3}{7}\end{cases}}}\)
a.(x+x).(1+2/3)
2x=(1+2/3)
2x=(5/3)
x=5/3:2
x=5/6
x=0,9
Vậy 0,9>0
\(\left(x+1\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>-1}\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< -\frac{2}{3}\end{cases}\Rightarrow}x< -\frac{2}{3}}\)
P/s : Bao giwof mk làm CTV các bạn nhớ vote cho mk nhé
a,\(\left(x-\frac{7}{9}\right)^3=\left(\left(\frac{2}{3}\right)^2\right)^3\)
\(x-\frac{7}{9}=\frac{4}{9}\)
\(x=\frac{4}{9}+\frac{7}{9}\)
\(x=\frac{11}{9}\)
Vậy x=\(\frac{11}{9}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\Rightarrow64\div\left(-2\right)^x=-32\)
\(\Rightarrow\left(-2\right)^x=64\div\left(-32\right)\)
\(\Rightarrow\left(-2\right)^x=\left(-2\right)^1\)
\(\Rightarrow x=1\)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Xét \(\left(x-2\right)\left(x+\frac{2}{3}\right)=0\Rightarrow\hept{\begin{cases}x-2=0\\x+\frac{2}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=-\frac{2}{3}\end{cases}}\)
Mà \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\) nên \(\left(x-2\right)\) và \(\left(x+\frac{2}{3}\right)\) đồng dấu
Suy ra \(\hept{\begin{cases}x>2\\x>-\frac{2}{3}\end{cases}\Leftrightarrow x>2}\) (do \(2>-\frac{2}{3}\)) hoặc \(\hept{\begin{cases}x< 2\\x< -\frac{2}{3}\end{cases}\Leftrightarrow x< -\frac{2}{3}}\) (do \(-\frac{2}{3}< 2\))
Vậy \(\hept{\begin{cases}x>2\\x< -\frac{2}{3}\end{cases}}\)
Lưu ý rằng: dấu ngoặc \(\hept{\begin{cases}...\\...\end{cases}}\) thay thế cho chữ hoặc nhé!