Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2\cdot2\sqrt{3}+x+1=\sqrt{3}\cdot\left(x+1\right)\)
=>\(x^2\cdot2\sqrt{3}+x\left(1-\sqrt{3}\right)+1-\sqrt{3}=0\)
\(\text{Δ}=\left(1-\sqrt{3}\right)^2-4\cdot2\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}\left(1-\sqrt{3}\right)\)
\(=4-2\sqrt{3}-8\sqrt{3}+24=28-10\sqrt{3}=\left(5-\sqrt{3}\right)^2>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(1-\sqrt{3}\right)-\left(5-\sqrt{3}\right)}{2\cdot2\sqrt{3}}=\dfrac{-1+\sqrt{3}-5+\sqrt{3}}{4\sqrt{3}}=\dfrac{1-\sqrt{3}}{2}\\x_2=\dfrac{-\left(1-\sqrt{3}\right)+5-\sqrt{3}}{2\cdot2\sqrt{3}}=\dfrac{4}{4\sqrt{3}}=\dfrac{1}{\sqrt{3}}\end{matrix}\right.\)
b: \(5x^2-3x+1=2x+31\)
=>\(5x^2-3x+1-2x-31=0\)
=>\(5x^2-5x-30=0\)
=>\(x^2-x-6=0\)
=>(x-3)(x+2)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
c: \(x^2+2\sqrt{2}x+4=3\left(x+\sqrt{2}\right)\)
=>\(x^2+2\sqrt{2}x+4-3x-3\sqrt{2}=0\)
=>\(x^2+x\left(2\sqrt{2}-3\right)+4-3\sqrt{2}=0\)
\(\text{Δ}=\left(2\sqrt{2}-3\right)^2-4\left(4-3\sqrt{2}\right)\)
\(=17-12\sqrt{2}-16+12\sqrt{2}=1\)>0
Do đó, phương trình có hai nghiệm phân biệt là:
\(\left[{}\begin{matrix}x_1=\dfrac{-\left(2\sqrt{2}-3\right)-1}{2}=\dfrac{-2\sqrt{2}+3-1}{2}=-\sqrt{2}+1\\x_2=\dfrac{-\left(2\sqrt{2}-3\right)+1}{2}=\dfrac{-2\sqrt{2}+4}{2}=-\sqrt{2}+2\end{matrix}\right.\)
ĐK: \(x\ge0\)
Đặt \(A=x^2+\left(1-\sqrt{x}\right)^2-3x+2\sqrt{x}\)
\(=x^2+1-2\sqrt{x}+x-3x+2\sqrt{x}\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\) (thỏa mãn ĐK)
Vậy \(A_{min}=0\Leftrightarrow x=1\)
ĐK: \(x\ge8\)
Đặt \(a=\sqrt[3]{x-1}\text{ (}a\ge\sqrt[3]{7}\text{)};\text{ }b=\sqrt{x-8}\text{ (}b\ge0\text{)}\Rightarrow x=b^2+8\)
\(a^3-b^2=x-1-\left(x-8\right)=7\text{ (*)}\)
\(pt\text{ thành }a^2-2a-\left(b^2+8-5\right)b-3\left(b^2+8\right)+31=0\)
\(\Leftrightarrow\left(a^2-2a\right)-\left(b^3+3b^2+3b\right)+7=0\)
\(\Leftrightarrow\left(a-1\right)^2-\left(b+1\right)^3+a^3-b^2=0\)
Đặt \(b+1=c\text{ (}c\ge1\text{)}\)
\(pt\text{ thành }a^3-c^3+\left(a-1\right)^2-\left(c-1\right)^2=0\)
\(\Leftrightarrow\left(a-c\right)\left(a^2+ac+c^2\right)+\left(a-c\right)\left(a+c-2\right)=0\)
\(\Leftrightarrow\left(a-c\right)\left[a^2+c^2+a+c+ac-2\right]=0\)
\(\Leftrightarrow a-c=0\text{ (do }a^2+c^2+a+c+ac-2>0\text{ với mọi }a\ge\sqrt[3]{7};c\ge1\text{)}\)
\(\Leftrightarrow a=c\Leftrightarrow a=b+1\)
Thay \(b=a-1\) vào \(\left(\text{*}\right)\)ta được
\(a^3-\left(a-1\right)^2=7\Leftrightarrow\left(a-2\right)\left(a^2+a+4\right)=0\)
\(\Leftrightarrow a-2=0\text{ hoặc }a^2+a+4=0\text{ (vô nghiệm)}\)
\(\Leftrightarrow a=2\)
\(\Rightarrow\sqrt[3]{x-1}=2\Leftrightarrow x=9\)
Kết luận: \(x=9\).
a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)
b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)
\(\Leftrightarrow x+2\sqrt{x}=0\)
hay x=0
a)\(\left\{{}\begin{matrix}8x+2y=4\\8x+3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1\\4x+1=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}y=1\\x=\frac{1}{4}\end{matrix}\right.\)b)
\(\left\{{}\begin{matrix}12x-8y=44\\12x-15y=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=35\\4x-5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\4x-5.5=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x=7\end{matrix}\right.\)c)\(\left\{{}\begin{matrix}9x=-18\\4x+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\4.\left(-2\right)+3y=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=7\end{matrix}\right.\)
a) \(\left\{{}\begin{matrix}7x+5y=19\left(1\right)\\3x+5y=31\left(2\right)\end{matrix}\right.\)
Lấy (1) - (2) ta có pt : 4x = -12 => x = -3. Thay vào (1 ) => y =8
\(\left(x-1\right)^2+3x=31\)
\(\Leftrightarrow x^2-2x+1+3x=31\)
\(\Leftrightarrow x^2+x-30=0\)
Ta có \(\Delta=1^2+4.30=121,\sqrt{\Delta}=11\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-1+11}{2}=5\\x=\frac{-1-11}{2}=-6\end{cases}}\)
\(\left(x-1\right)^2+3x=31\)
<=> x^2 -2x+1+3x=31
<=> x^2 +x+1=31
<=> x^2+x-30=0
<=> x^2 +6x-5x-30=0
<=> x(x+6)-5(x+6)=0
<=> (x+6)(x-5)=0
<=> x+6=0 hoặc x-5=0
<=> x=-6 hoặc x=5