Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1 (1 - (x - 7)10) = 0
\(\Leftrightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)=1;-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\x=6;8\end{cases}}\)
Vậy x = {6;7;8} .
\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x-7=\pm1\end{cases}}}\)
vậy x=7, x=8 hay x=6
b)
(x-7)x+1 - (x-7)x+11 = 0
=>(x-7)x+1.[1-(x-7)10]=0
=>(x-7)x+1=0 hoặc 1-(x-7)10=0
=>x-7=0 hoặc (x-7)10=1
=>x=7 hoặc x-7=1 hoặc x-7=-1
=>x=7 hoặc x=8 hoặc x=6
a)
(x-1)x+2=(x-1)x+6
(x-1)x+2-(x-1)x+6=0
(x-1)x+2 . [1-(x-1)4]=0
=> (x-1)x+2=0 hoặc 1-(x-1)4=0
=>x-1=0 =>(x-1)4=1
=>x=1 =>x-1=1 hoặc x-1=-1
=> x=2 hoặc x=0
vậy x \(\in\) {0;1;2}
b: \(\dfrac{2x+3}{3-x}\le0\)
\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)
=>x>3 hoặc x<=-3/2
c: \(\dfrac{x+5}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)
=>2/(x+3)>0
=>x+3>0
hay x>-3
lập bảng cho nành v10; v7\(=\sqrt{10};\sqrt{7}\)
x | -vc | -v10 | -v7 | -2 | -1 | 0 | 1 | 2 | v7 | v10 | +vc | ||||||||||
x+v10 | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+v7 | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+2 | - | - | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | ||||
x+1 | - | - | - | -- | - | 0 | + | + | + | + | + | + | + | + | + | ||||||
x-1 | - | - | - | - | 0 | + | |||||||||||||||
x-2 | - | - | - | - | 0 | + | |||||||||||||||
x-v7 | - | - | - | - | - | 0 | + | ||||||||||||||
x-v10 | - | - | - | - | - | - | 0 | + | |||||||||||||
VT | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | ||||
các khoảng x thỏa man la
-v10<x<-v7
-1<x<-2
1<x<2
v7<x<v10
x nguyen
=> x={-3,3}
https://olm.vn/hoi-dap/tim-kiem?q=Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++(x2-1).(x2-4).(x2-7).(x2-10)%3C0&id=153167
\(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
\(\Leftrightarrow x^4-11x^2+10,x^2-11x^2+28\) là 2 số trái dấu
Mà \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^4-11x^2+10< 0\\x^4-11x^2+28>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-\dfrac{11}{2}\right)^2-\dfrac{81}{4}< 0\\\left(x^2-\dfrac{11}{2}\right)^2-\dfrac{9}{4}>0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{9}{4}< \left(x^2-\dfrac{11}{2}\right)^2< \dfrac{81}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3}{2}< x^2-\dfrac{11}{2}< \dfrac{9}{2}\\-\dfrac{3}{2}>x^2-\dfrac{11}{2}>-\dfrac{9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}7< x^2< 10\\4>x^2>1\end{matrix}\right.\)
Vì \(x\in Z\Leftrightarrow x^2\in Z\Leftrightarrow x^2=9\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy....
Bài 1:
a: \(\left(2x-1\right)^4=16\)
=>2x-1=2 hoặc 2x-1=-2
=>2x=3 hoặc 2x=-1
=>x=3/2 hoặc x=-1/2
b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)
c: \(10800=2^4\cdot3^3\cdot5^2\)
mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)
nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)
a) Ta có : \(5^x+5^{x+2}=650=>5^x\left(1+5^2\right)=650=>5^x.26=650=>5^x=25=5^2=>x=2\)
Vậy x=2
b) Ta có : \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0=>\left(x-7\right)^{x+1}[1-(x-7)^{10}]=0\)
\(=>\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}=>\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(=>x=7\) hoặc \(x-7=1\)hoặc \(x-7=-1\)
\(=>x=7\) hoặc \(x=8\) hoặc \(x=6\)