K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2019

1) Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{12x-15y}{7}=\frac{20y-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)

 \(\Rightarrow\hept{\begin{cases}12x-15y=0\\15y-20z=0\end{cases}\Rightarrow}\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{12}\\\frac{y}{20}=\frac{z}{15}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{75}=\frac{y}{60}\\\frac{y}{60}=\frac{z}{45}\end{cases}\Rightarrow}\frac{x}{75}=\frac{y}{60}=\frac{z}{45}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

=> x = 75.4 : 15 = 20 ;

     y = 60.4 : 15 = 16 ;

     z = 45.4 : 15 = 12

Vậy x = 20 ; y = 16 ; z = 12 

27 tháng 10 2019

2) Từ đẳng thức \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{t+x+y}=\frac{t}{x+y+z}\)

\(\Rightarrow\frac{z}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{t+x+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{t+x+y}=\frac{x+y+z+t}{x+y+z}\)

Nếu x + y + z + t = 0

=> x + y = - (z + t)

=> y + z = - (t + x)

=> z + t = - (x + y)

=> t + x = - (z + y)

Khi đó : 

P =  \(\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(z+y\right)}{z+y}=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

=> P = 4 

Nếu x + y + z + t khác 0 

=> \(\frac{1}{y+z+t}=\frac{1}{z+t+x}=\frac{1}{t+x+y}=\frac{1}{x+y+z}\)

=> y + z + t = z + t + x = t + x + y = x + y + z

=> x =y = z = t

Khi đó : P = 1 + 1 + 1 + 1 = 4

Vậy nếu x + y + z + t = 0 thì P = - 4

       nếu x + y + z + t khác 0 thì P = 4

3 tháng 10 2019

\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)  => 

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen

20 tháng 11 2018

QUI đồng lên rồi tính

20 tháng 11 2018

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)

\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Xét: 

\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)

Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)

\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)

Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)

Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)

Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)

1 tháng 11 2018

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

\(\frac{12x-15y}{7}=0\Rightarrow12x=15y\Rightarrow\frac{x}{15}=\frac{y}{12}\left(1\right)\)

\(\frac{20z-12x}{9}=0\Rightarrow20z=12x\Rightarrow\frac{z}{12}=\frac{x}{20}\left(2\right)\)

\(\frac{15y-20z}{11}=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\left(3\right)\)

từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\frac{x}{25}=\frac{y}{20}=\frac{z}{15}\)

áp dụng .......

p/S:đến đây tự làm tiếp đoạn từ (1),(2),(3) b nhân lên mẫu của p/s chung sau đó rút gọn.ko hiểu ib vs mk =)

2 tháng 11 2018

hehehe lo rút gọn số lớn ko để ý số nhỏ đấy vẫn rút đc tiếp

\(\frac{x}{25}=\frac{y}{20}=\frac{z}{15}=\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)

áp dụng t/c dãy tỉ sô bằng nhau ta cco:

\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{12}=\frac{48}{12}=4\)

\(\frac{x}{5}=4=>x=20\)

\(\frac{y}{4}=4=>y=16\)

\(\frac{z}{3}=4=>z=12\)

vậy x=20,y=16,z=12

p/s: tớ hay sai mấy lôi nhỏ này --thông cảm =] lần sau sẽ cẩn thận hơn 

m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)

Do đó: x=8; y=10; z=7

n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

5 tháng 11 2016

Áp dụng dãy tỉ số bằng nhau 

\(\frac{12x-15y+20z-12x+15y-20z}{27}=0\) 

rút gọn mới được bằng 0 nha

\(\Rightarrow\frac{12x-15y}{7}=0\Leftrightarrow12x-15y=0\Leftrightarrow12x=15y\Rightarrow\frac{x}{12}=\frac{y}{15}\left(1\right)\)

\(\Rightarrow\frac{15y-20z}{11}=0\Leftrightarrow15y=20z\Rightarrow\frac{y}{15}=\frac{z}{20}\left(2\right)\)

Từ 1 và 2 ta được 

\(\frac{x}{12}=\frac{y}{15}=\frac{z}{20}\)

Rồi đến đây tự làm nha mỏi tay lắm x+y+z=48 dưới mấu số cũng rứa rồi ngủ đây