Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow7⋮x-1\Leftrightarrow x-1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Leftrightarrow x\in\left\{-6;0;2;8\right\}\\ b,\Leftrightarrow\dfrac{x-1+2}{x-1}\in Z\Leftrightarrow1+\dfrac{2}{x-1}\in Z\\ \Leftrightarrow2⋮x-1\Leftrightarrow x-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\\ \Leftrightarrow x\in\left\{-1;0;2;3\right\}\)
Ta có: x+1/x = 1 + 1/x
Để x+1/x thuộc Z thì 1 + 1/x thuộc Z <=> 1/x thuộc Z => 1 chia hết cho x <=> x thuộc Ư(1) = + - 1
(A=dfrac{x}{x+y+z}+dfrac{y}{y+z+t}+dfrac{z}{z+t+x}+dfrac{t}{t+x+y})
Giả sử: (Ain N) thì
(left{{}egin{matrix}dfrac{x}{x+y+z}in N\dfrac{y}{y+z+t}in N\dfrac{z}{z+t+x}in N\dfrac{t}{x+y+t}in Nend{matrix} ight.) (Leftrightarrowleft{{}egin{matrix}x⋮x+y+z\y⋮y+z+t\z⋮z+t+x\t⋮t+x+yend{matrix} ight.)
Vì (x;y;z;tin Ncircledast) nên
(left{{}egin{matrix}xge x+y+z\yge y+z+t\zge z+t+x\tge t+x+yend{matrix} ight.Leftrightarrowleft{{}egin{matrix}x+yle0\z+tle0\t+xle0\x+yle0end{matrix} ight.)
Điều trên ko thể xảy ra, (A otin N)
\(\frac{2\sqrt{x}-1}{\sqrt{x}+2}=\frac{2\sqrt{x}+4-5}{\sqrt{x}+2}=\frac{2\left(\sqrt{x}+2\right)-5}{\sqrt{x}+2}=2-\frac{5}{\sqrt{x}+2}\)
Để
\(\Rightarrow\frac{5}{\sqrt{x}+2}\in Z\)
\(\Rightarrow5⋮\sqrt{x}+2\)
\(\Rightarrow\sqrt{x}+2\in\left(-1;1;-5;5\right)\)
\(\Rightarrow\sqrt{x}\in\left(-3;-1;-7;3\right)\)
\(\Rightarrow x\in\left(9;1;49\right)\)
\(N=\frac{7}{x-1}\)
=> x-1 thuộc Ư(7)={-1,-7,1,7}
=> n thuộc {0,-6,2,8}
\(P=\frac{x+1}{x-1}\Leftrightarrow P=\frac{x-1+2}{x-1}\Leftrightarrow P=\frac{x-1}{x-1}+\frac{2}{x-1}\Leftrightarrow P=1+\frac{2}{x-1}\)
=> x-1 thuộc Ư(2)={-1,-2,1,2}
=> n thuộc {0,-1,2,3}
\(M=\frac{x+2}{3}\)nguyên
\(\Leftrightarrow x+2⋮3\)
\(\Rightarrow x+2\in B\left(3\right)=\left\{0;\pm3;\pm6;...\right\}\)
\(\Rightarrow x\in\left\{-2;1;-5;4;-8;...\right\}\)
Vậy....
a) A min \(_{\Leftrightarrow}\) \(\dfrac{1}{x-3}\) đạt GTNN \(\Leftrightarrow\) x-3 lớn nhất mà x \(\in Z\) nên x bất kì sao cho càng lớn là đc (vô lý) xem lại đề