Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)
để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá
TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
mk ko bt sao mk chia xg gửi bài nó bị vậy nx , bn tự chia nha , mà quan trọng là phần dưới ,nếu chưa lm đc thì bn nới mk mk sẽ chia giúp ngoc anh nguyen
b: \(\Leftrightarrow n^3-8+6⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
c: \(\Leftrightarrow n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
\(\Leftrightarrow n^2+n+1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow n^2+n+1\in\left\{1;3\right\}\)
\(\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
a, Ta có : \(4n^2.\left(n+2\right)+4n.\left(n+2\right)\)
\(=\left(n+2\right).\left(4n^2+4n\right)\)
\(=4n.\left(n+2\right).\left(n+1\right)\)
\(=4n.\left(n+1\right).\left(n+2\right)⋮4\)
\(n.\left(n+1\right).\left(n+2\right)\) là tích của ba số liên tiếp
\(\Rightarrow n.\left(n+1\right).\left(n+2\right)⋮2\) và \(3\)
mà \(n.\left(n+1\right).\left(n+2\right)⋮\left(2.3\right)\)
Vậy \(4n^2.\left(n+2\right)+4n.\left(n+2\right)⋮24\left(đpcm\right)\)
b,
+ Thực hiện phép tính :
6n^2 + n - 1 - 6n^2 + 4n 3n + 2 2n - 1 -3n - 1 - -3n - 2 1
Ta có : \(\dfrac{6n^2+n-1}{3n+2}=2n-1+\dfrac{1}{3n+2}\)
Để \(\left(6n+n-1\right)⋮\left(3n+2\right)\) thì \(\dfrac{1}{3n+2}\in Z\)
\(\Rightarrow3n+2\inƯ\left(1\right)\)
\(\Rightarrow3n+2\in\left\{\pm1\right\}\)
Ta có bảng sau :
3n+2 | 1 | -1 |
n | \(-\dfrac{1}{3}\) | -1 |
Vậy n = -1
a, Nếu n=2k thì 3n-1 = 32k-1 = 9k-1 = (9-1)A = 8A chia hết cho 8
Nếu n=2k+1 thì 3n-1 = 32k+1-1 = 32k.3-1 = 9k.3-1 = 3(9k-1) + 2 chia 8 dư 2
Vậy 3n-1 chia hết cho 8 khi n = 2k
b, \(3^{2n+3}+2^{4n+1}=27.3^{2n}+2.2^{4n}\)
\(=25.3^{2n}+2.3^{2n}+2.2^{4n}=25.3^{2n}+2\left(3^{2n}+2^{4n}\right)\)
\(=25.3^{2n}+2\left(9^n+16^n\right)\)
Nếu n=2k thì 9n có tận cùng là 1, 16n có tận cùng là 6
=>2(9n+16n) có tận cùng là 4 không chia hết cho 25
Nếu n=2k+1 thì 9n+16n chia hết cho 9+16 = 25 do đó 32n+3+24n+1 chia hết cho 25
Vậy n = 2k+1
c, Nếu n=3k thì \(5^n-2^n=5^{3k}-2^{3k}=125^k-8^k=\left(125-8\right)A=117A⋮9\)
Nếu n=3k+1 thì \(5^n-2^n=5^{3k+1}-2^{3k+1}=125^k.5-8^k.2=5\left(125^k-8^k\right)+3.8^k\)
\(=BS9+3\left(BS9-1\right)^k=BS9+BS9-3⋮9̸\)
Nếu n=3k+2 thì \(5^n-2^n=5^{3k+2}-2^{3k+2}=125^k.25-8^k.4\)
\(=25\left(125^k-8^k\right)+21.8^k=BS9+21\left(BS9-1\right)^k=BS9+BS9-21⋮9̸\)
Vậy n=3k
a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)
\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)
\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)
Vì n;n-1;n+1;n-2 là 4 số liên tiếp
nên n(n-1)(n+1)(n+2) chia hết cho 4!=24
mà -8n(n-2)(n-1) chia hết cho 24
nên A chia hết cho 24
b: \(=n\left(n^4-5n^2+4\right)\)
\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)
Vì đây là 5 số liên tiếp
nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)
n=0,-1,1