Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{x+1+x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x+1\right)^2}{2x+1}\)
\(=\dfrac{x+1}{x-1}\)
b: Khi x=2 thì \(A=\dfrac{2+1}{2-1}=3\)
c: Để A là số nguyên thì \(x-1+2⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
hay \(x\in\left\{2;0;3\right\}\)
Ko thể dịch nổi đề câu 1 a;b, chỉ đoán thôi. Còn câu 2 thì thực sự là chẳng hiểu bạn viết cái gì nữa? Chưa bao giờ thấy kí hiệu tích phân đi kèm kiểu đó
Câu 1:
a/ \(\int\frac{2x+4}{x^2+4x-5}dx=\int\frac{d\left(x^2+4x-5\right)}{x^2+4x-5}=ln\left|x^2+4x-5\right|+C\)
b/ \(\int\frac{1}{x.lnx}dx\)
Đặt \(t=lnx\Rightarrow dt=\frac{dx}{x}\)
\(\Rightarrow I=\int\frac{dt}{t}=ln\left|t\right|+C=ln\left|lnx\right|+C\)
c/ \(I=\int x.sin\frac{x}{2}dx\)
Đặt \(\left\{{}\begin{matrix}u=x\\dv=sin\frac{x}{2}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-2cos\frac{x}{2}\end{matrix}\right.\)
\(\Rightarrow I=-2x.cos\frac{x}{2}+2\int cos\frac{x}{2}dx=-2x.cos\frac{x}{2}+4sin\frac{x}{2}+C\)
d/ Đặt \(\left\{{}\begin{matrix}u=ln\left(2x\right)\\dv=x^3dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2dx}{2x}=\frac{dx}{x}\\v=\frac{1}{4}x^4\end{matrix}\right.\)
\(\Rightarrow I=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{4}\int x^3dx=\frac{1}{4}x^4.ln\left(2x\right)-\frac{1}{16}x^4+C\)
Câu 1:
Đặt \(3^x=t(t>0)\)
PT trở thành:
\(t^2-6.t+5=m\)
\(\Leftrightarrow t^2-6t+(5-m)=0\)
Để PT có đúng một nghiệm thì \(\Delta'=9-(5-m)=0\)
\(\Leftrightarrow m=-4\)
Thử lại \(9^x-6.3^x+9=0\Leftrightarrow 3^x=3\Leftrightarrow x=1\in [0;+\infty )\) (đúng)
Vậy \(m=-4\)
Câu 2:
\(4^x-2^x-m\geq 0\Leftrightarrow (2^x)^2-2^x-m\geq 0\)
Đặt \(2^x=t\Rightarrow t^2-t-m\geq 0\) với mọi \(t\in (1; 2)\)
\(\Leftrightarrow m\leq t^2-t\Leftrightarrow m\leq \min (t^2-t)\)
Xét hàm \(f(t)=t^2-t\Rightarrow f'(t)=2t-1>0\forall t\in (1;2)\)
\(\Rightarrow f(t)> f(1)=0\) với mọi \(t\in (1;2)\)
Do đó \(m\leq 0\)