Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x+4/2015 + x+3/2016 = x+2/2017 + x+1/2018
=> 1 + x+4/2015 + 1 + x+3/2016 = 1 + x+2/2017 + 1 + x+1/2018
=> x+2019/2015 + x+2019/2016 = x+2019/2017 + x+2019/2018
=> x+2019/2015 + x+2019/2016 - x+2019/2017 - x+2019/2018 = 0
=> (x + 2019).(1/2015 + 1/2016 - 1/2017 - 1/2018) = 0
Vì 1/2015 > 1/2017; 1/2016 > 1/2018
=> 1/2015 + 1/2016 - 1/2017 - 1/2018 khác 0
=> x + 2019 = 0
=> x = -2019
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
Tìm \(x\varepsilonℝ\) biết \(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{3x+12}{2015}\)
\(\frac{x+1}{2018}+1+\frac{x+2}{2017}+1+\frac{x+3}{2016}+1=\frac{3x+12}{2015}+3\)
\(\frac{x+2019}{2018}+\frac{x+2019}{2017}+\frac{x+2019}{2016}=\frac{3 \left(x+2019\right)}{2015}\)
\(\left(x+2019\right)\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{3}{2015}\right)=0\)
mà \(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}-\frac{3}{2015}\ne0\Rightarrow x+2019=0\Leftrightarrow x=-2019\)
\(\frac{x+1}{2019}+\frac{x+2}{2018}=\frac{x+3}{2017}+\frac{x+4}{2016}\)
\(\Leftrightarrow\left(\frac{x+1}{2019}-1\right)+\left(\frac{x+2}{2018}-1\right)=\left(\frac{x+3}{2017}-1\right)+\left(\frac{x+4}{2016}-1\right)\)
\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}=\frac{x+2020}{2017}+\frac{x+2020}{2016}\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x+2020=0:\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)\)
\(\Leftrightarrow x+2020=0\)
Còn lại tự làm :V
Lộn chỗ này , thay chút nha !
\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)=\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)\)
Sorry =))
x/2015+x/2016+x/2017=0 =>x(1/2015+1/2016+1/2017+1/2018)=0 =>x=0
kick mk nha, chúc bn hok tốt!!
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\Leftrightarrow\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}-\frac{x-4}{2016}=0\)
\(\Leftrightarrow\frac{x-1}{2019}-1+\frac{x-2}{2018}-1-\frac{x-3}{2017}+1-\frac{x-4}{2016}+1=0\)
\(\Leftrightarrow\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\Leftrightarrow\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Leftrightarrow x-2020=0\Leftrightarrow x=2020\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-\frac{x-3}{2017}=\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}=\frac{x-3}{2017}+\frac{x-4}{2016}\)
\(\frac{x-1}{2019}+\frac{x-2}{2018}-2=\frac{x-3}{2017}+\frac{x-4}{2016}-2\)
\(\left(\frac{x-1}{2019}-1\right)+\left(\frac{x-2}{2018}-1\right)=\left(\frac{x-3}{2017}-1\right)+\left(\frac{x-4}{2016}-1\right)\)
\(\frac{x-1-2019}{2019}+\frac{x-2-2018}{2018}=\frac{x-3-2017}{2017}+\frac{x-4-2016}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}=\frac{x-2020}{2017}+\frac{x-2020}{2016}\)
\(\frac{x-2020}{2019}+\frac{x-2020}{2018}-\frac{x-2020}{2017}-\frac{x-2020}{2016}=0\)
\(\left(x-2020\right)\left(\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
\(\Rightarrow x-2020=0\)
Vậy \(x=2020\)
Có:\(\left(x+2020\right)\left(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)=0\)Mà \(\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}>0\)
=>x+2020=0<=>x=-2020
Tìm \(x\varepsilonℝ\) biết \(\frac{x+1}{2018}+\frac{x+2}{2017}+\frac{x+3}{2016}=\frac{3x+12}{2015}\)
\(\dfrac{x+1}{2018}+\dfrac{x+2}{2017}+\dfrac{x+3}{2016}=\dfrac{3x+12}{2015}\)
\(\Rightarrow\dfrac{x+1}{2018}+\dfrac{x+2}{2017}+\dfrac{x+3}{2016}-\dfrac{3x+12}{2015}=0\)
\(\Rightarrow\dfrac{x+1}{2018}+\dfrac{x+2}{2017}+\dfrac{x+3}{2016}+\dfrac{3\cdot\left(x+4\right)}{2015}=0\)
\(\Rightarrow\left(\dfrac{x+1}{2018}+1\right)+\left(\dfrac{x+2}{2017}+1\right)+\left(\dfrac{x+3}{2016}+1\right)+\left(\dfrac{3}{2015}\cdot\left(\dfrac{x+4}{2015}+1\right)\right)=0\)
\(\Rightarrow\left(x+2019\right)\cdot\left(\dfrac{1}{2018}+\dfrac{1}{2017}+\dfrac{1}{2016}+\left(\dfrac{3}{2015}\cdot\dfrac{1}{2005}\right)\right)=0\)
\(\Rightarrow x+2019=0\\ \Rightarrow x=-2019\)
\(\frac{x+1}{2015}+\frac{x+1}{2016}=\frac{x+1}{2017}+\frac{x+1}{2018}\)
\(\Rightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\)
\(\Rightarrow x+1=0\)
\(x=-1\)
\(\Leftrightarrow\frac{x+1}{2015}+\frac{x+1}{2016}-\frac{x+1}{2017}-\frac{x+1}{2018}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\right)=0\)
\(\Leftrightarrow x+1=0\) ( vì \(\frac{1}{2015}+\frac{1}{2016}-\frac{1}{2017}-\frac{1}{2018}\ne0\))
\(\Leftrightarrow x=-1\)