Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-3}{x+5}=\frac{5}{7}\)
=> 7 ( x - 3 ) = 5 ( x + 5 )
7x - 21 = 5x + 25
7x - 5x = 25 + 21
2x = 46
x = 23
a)\(\left(2x-3\right)\left(x+1\right)< 0\)
\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\) hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại) hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)
\(\Leftrightarrow-1< x< \frac{3}{2}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)
c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)
Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)
\(\Leftrightarrow x=4\)
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
x+7/2010+x+6/2011=x+5/2012+x+4/2013
((x+7/2010)-1)+((x+6/2011)-1)=(x+5/2012)-1)+(x+4/2013)-1)
x+2017/2010+x+2017/2011-x+2017/2012-x+2017/2013=0
x+2017(1/2010+1/2011-1/2012-1/2013)=0
x+2017=0(vì 1/2010+1/2011-1/2012-1/2013<0)
x=-2017
vậy.......
tk mk nha bn
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)
a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)
\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)
\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)
\(\frac{5}{6}=\frac{1}{2}x\)
\(x=\frac{5}{6}:\frac{1}{2}\)
\(x=\frac{5}{3}\)
b) |3x-4|+|3y+5|=0
ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)
Mà |3x-4|+|3y+5|=0 nên :
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy x=4/3 ; y=-5/3
c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vậy ...
a)|x|=1/7
b)|x|=1/7
c)|x|=\(\left|-3\frac{1}{5}\right|=3\frac{1}{5}\)
d)|x|=|0|=0