Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng các hằng đẳng thức thôi mà :)
a)\(x^2-2x+1=25\)
=>\(\left(x-1\right)^2=25\)
=>\(\orbr{\begin{cases}x-1=-5\\x-1=5\end{cases}}\)
b)\(3\left(x-1\right)^2-3x\left(x-5\right)=1\)
=>\(3\left[\left(x-1\right)^2-x\left(x-5\right)\right]=1\)
=>\(3\left(x^2-2x+1-x^2+5x\right)=1\)
=>\(3\left(3x+1\right)=1\)
=>\(3x+1=\frac{1}{3}\)
=>\(3x=\frac{-2}{3}\)
=>\(x=\frac{-2}{9}\)
c)\(\left(5-2x\right)^2-16=0\)
=>\(\left(5-2x\right)^2-4^2=0\)
=>\(\left(5-2x-4\right)\left(5-2x+4\right)=0\)
=>\(\orbr{\begin{cases}5-2x-4=0\\5-2x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{9}{2}\end{cases}}}\)
tìm x,biết:
a)x^3-6x^2+12x-9=0
b)8x^3+12x^3+6x-26=0
~ giúp mk nha,cảm ơn nhiều ~
a,=(x\(^2\)-6x+9)+10-9
=(x-3)\(^2\)+1
Mà(x-3)\(^2\)\(\ge\)0
nên (x-3)\(^2\)+1>0
b,= -(-4x+x\(^2\))-5
= -(4-4x+x\(^2\))-5+4
= -(2-x)\(^2\)-1
Mà -(2-x)\(^2\)\(\le\)0
nên -(2-x)\(^2\)-1< 0
Võ Hoàng Tiên: Cảm ơn pạn nhiều lắm =)) nek :3 Hí Hí :) Thankssssss
x2-4x+4=4x2-12x+9
\(\Leftrightarrow\)3x2-8x+5=0
\(\Leftrightarrow\)3x2-3x-5x+5=0
\(\Leftrightarrow\)3x(x-1)-5(x-1)=0
\(\Leftrightarrow\)(x-1)(3x-5)=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=1\end{cases}}\)
b,x2-2x-25=0
\(\Leftrightarrow\)(x-1)2-26=0
\(\Leftrightarrow\)(x-1-\(\sqrt{26}\))(x-1+\(\sqrt{26}\))=0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{26}+1\\x=-\sqrt{26}+1\end{cases}}\)
2, a, x^2-2x+1+4=(x-1)^2+4\(\ge\)4
b, 4x^2-4x+1-1+y^2+2y+1-1-2015=(2x-1)^2+(y+1)^2-2017\(\ge\)-2017
mk làm như thế thôi chứ bài kia dài quá mk làm biếng sory
Nguyễn Thị Hà Tiên : Cảm ơn bạn nhiều lắm =)) Mik đã bt hướng làm bài rồi :3 Thực sự cảm ơn pạn nek <3
Bài 1:
a) \(\left(x-2\right)^2=4x^2-12x+9\Leftrightarrow\left(x-2\right)^2=\left(2x-9\right)^2\Leftrightarrow\left(x-2\right)^2-\left(2x-9\right)^2=0\)
\(\Leftrightarrow\left(x-2+2x-9\right)\left(x-2-2x+9\right)=0\Leftrightarrow\left(3x-11\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}3x-11=0\Leftrightarrow3x=11\Leftrightarrow x=\frac{11}{3}\\7-x=0\Leftrightarrow-x=-7\Leftrightarrow x=7\end{cases}}\)
VẬy tập nghiệm của phương trình là : S={11/3 ; 7}
b) Nếu x^2 -2x =25 thì lẻ lắm . Tớ nghĩ phải là : x^2 -2x = 24
Bài 2 :
a) \(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\) hay \(A\ge4\)
Vậy GTNN của A là 4 khi x = 1 ( hay x-1 =0 )
b) \(B=4x^2-4x+y^2+2y-2015=\left(4x^2-4x+1\right)+\left(y^2+2y+1\right)-2017\)
\(=\left(2x-1\right)^2+\left(y+1\right)^2-2017\)
Vì \(\left(2x-1\right)^2\ge0\) và \(\left(y+1\right)^2\ge0\) nên \(\left(2x-1\right)^2+\left(y+1\right)^2-2017\ge-2017\)
HAy \(B\ge-2017\) Vậy GTNN của B là -2017 khi x=1/2 và y = -1
a) \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\) nên \(\left(x-1\right)^2+4\ge4\)
Vậy GTNN của P là 4 khi x = 1
b) \(Q=2x^2-6x=2x^2-6x+4,5-4,5=2.\left(x^2-3x+2,25\right)-4,5=2.\left(x-1,5\right)^2-4,5\)
Vì \(2.\left(x-1,5\right)^2\ge0\) nên \(2.\left(x-1,5\right)^2-4,5\ge-4,5\)
Vậy GTNN của Q là -4,5 khi x = 1,5
c) \(M=x^2+y^2-x+6y+10=\left(x^2-x+0,25\right)+\left(y^2+6y+9\right)+0,75\)
\(=\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\)
Vì \(\left(x-0,5\right)^2\ge0\) và \(\left(y+3\right)^2\ge0\) nên \(\left(x-0,5\right)^2+\left(y+3\right)^2+0,75\ge0,75\)
Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3
Ta có : P = x2 - 2x + 5
= x2 - 2x + 1 + 4
= (x - 1)2 + 4
Mà : (x - 1)2 \(\ge0\forall x\)
Nên : (x - 1)2 + 4 \(\ge4\forall x\)
Vậy GTNN của biểu thức là : 4 khi x = 1
8x^3 - 8x^2 + 20x^2 - 20x + 26x - 26 =0
<=> 8x^2 ( x-1) + 20x(x-1) + 26(x-1)=0
<=>( 8x^2 + 20x + 26)(x-1)=0
<=> ( x-1)= 0 ( Vì 8x^2 + 20x + 26 >=13,5)
<=> x=1