Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\) \(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^{2010}.\left(2x-1\right)^2=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=1\\2x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=2\\2x=0\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{2}{2}\\x=\frac{0}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
Vậy \(x=0\) hoặc \(x=1\)
Chúc bạn học tốt ~
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a) \(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
b) \(5x-2x^2+2x^2-2x=15\)
\(3x=15\)
\(x=5\)
\(5x^2+5y^2+8xy+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-2y+1\right)+4\left(x^2+2xy+y^2\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+4\left(x+y\right)^2=0\)
\(\Rightarrow x=-1;y=1\)
Khi đó:
\(M=\left(1-1\right)^{2010}+\left(2-1\right)^{2011}+\left(1-1\right)^{2012}\)
\(=1\)
1. \(\left(5x-1\right)\left(x-1\right)+6x-44=0\)
=> \(5x^2-5x-x+1+6x-44=0\)
=> \(5x^2-43=0\)
=> \(5x^2=43\)
=> \(x^2=43:5\)
=> \(x^2=\frac{43}{5}\)
=> \(\orbr{\begin{cases}x=\sqrt{\frac{43}{5}}\\x=-\sqrt{\frac{43}{5}}\end{cases}}\)
2. \(\left(2x+1\right)\left(4x^2-2x+1\right)+9=0\)
=> \(8x^3+1+9=0\)
=> \(8x^3+10=0\)
=> \(8x^3=-10\)
=> \(x^3=-10:8\)
=> \(x^3=-\frac{5}{4}\)
=> ko bt
2,\(\left(2x+1\right)\left(4x^2-2x+1\right)+9=0\)
\(\Rightarrow8x^3-4x^2+4x^2-2x+1+9=0\)
\(\Rightarrow8x^3+10=0\)
\(\Rightarrow x^3=\frac{-5}{4}\)
\(\Rightarrow x=\sqrt[3]{\frac{-5}{4}}\)
Vậy....
1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)
\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)
\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)
Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)
2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)
\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)
\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)
\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
Vậy \(x=2003\)
3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)
\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)
\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)
Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)
\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)
Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)
\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)
Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)
\(1,\left(2x+1\right)\left(x-1\right)-x\left(2x-3\right)+3=0\)
\(\Rightarrow2x^2-2x+x-1-\left(2x^2-3x\right)+3=0\)
\(\Rightarrow2x^2-2x+x-1-2x^2+3x+3=0\)
\(\Rightarrow2x=-2\Rightarrow x=-1\)
\(2,\left(x^2+x-2\right)\left(x^2-x-2\right)-x^2\left(x^2-2\right)+8=0\)
\(\Rightarrow[\left(x^2\right)^2-\left(x-2\right)^2]-x^2\left(x^2-2\right)+8=0\)
\(\Rightarrow x^4-\left(x^2-4x+4\right)-x^4+2x^2+8=0\)
\(\Rightarrow x^4-x^2+4x-4-x^4+2x^2+8=0\)
\(\Rightarrow x^2+4x+4=0\)
\(\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
Đặt 2x^2 + x +2013 = a, x^2-5x+2012 = b
Ta có: a^2 + 4b^2 = 4ab
a^2 - 4ab + 4b^2 = 0
(a-2b)^2 = 0
Do đó: a = 2b
Hay: 2x^2 + x -2013 = 2(x^2 -5x -2012)
2x^2 + x -2013 = 2x^2 -10x -4024
x-2013 = -10x -4024
x+10x = -4024+2013
11x = -2011
x = -2011/11
Bạn hỏi nhiều câu hay đấy. Chúc bạn học tốt.
\(\left(2x-1\right)^{2012}=\left(2x-1\right)^{2010}\)
\(\Leftrightarrow\left(2x-1\right)^{2012}-\left(2x-1\right)^{2010}=0\)
\(\Leftrightarrow[\left(2x-1\right)^{2010}.\left(2x-1\right)^2]-\left(2x-1\right)^{2010}=0\)\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-1\right)^2-1]=0\)
\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-1-1\right)\left(2x-1+1\right)]=0\)
\(\Leftrightarrow\left(2x-1\right)^{2010}.[\left(2x-2\right)2x]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)^{2010}\\2x\left(2x-2\right)=0\end{matrix}\right.=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x=0\\2x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=0\\x=1\end{matrix}\right.\)
Vậy x \(\in\left\{\dfrac{1}{2};0;1\right\}\)
\((2x-1)^{2012} = (2x-1)^{2010} \)
\(\)\(\Leftrightarrow\)\((2x-1)^{2012} - (2x-1)^{2010} = 0\)
\(\Leftrightarrow\)\((2x-1)^{2010} . [(2x-1)^{2} - 1] = 0\)
\(\Leftrightarrow\)\((2x-1)^{2010} . (2x-2).2x = 0\)
\(\Leftrightarrow\)\(4 . (2x-1)^{2010} . (x-1) . x = 0\)
\(\Rightarrow\)\(\left[{}\begin{matrix}\left(2x-1\right)^{2010}=0\\x-1=0\\x=0\end{matrix}\right.\)
\(\Rightarrow\)\(\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\\x=0\end{matrix}\right.\)
\(Vậy \) \(x= \)\(\dfrac{1}{2}\); \(x=1\) \(hay\) \(x=0\)