Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x+7⋮x+2\)
=>\(x+2+5⋮x+2\)
=>\(5⋮x+2\)
=>\(x+2\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-1;-3;3;-7\right\}\)
b: \(2x+5⋮x+1\)
=>\(2x+2+3⋮x+1\)
=>\(3⋮x+1\)
=>\(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
c: \(3x-2⋮x+3\)
=>\(3x+9-11⋮x+3\)
=>\(-11⋮x+3\)
=>\(x+3\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{-2;-4;8;-14\right\}\)
d: \(12x+1⋮3x+2\)
=>\(12x+8-7⋮3x+2\)
=>\(-7⋮3x+2\)
=>\(3x+2\in\left\{1;-1;7;-7\right\}\)
=>\(3x\in\left\{-1;-3;5;-9\right\}\)
=>\(x\in\left\{-\dfrac{1}{3};-1;\dfrac{5}{3};-3\right\}\)
e: \(x^2+3x+5⋮x+3\)
=>\(x\left(x+3\right)+5⋮x+3\)
=>\(5⋮x+3\)
=>\(x+3\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{-2;-4;2;-8\right\}\)
f: \(x^2-2x+3⋮x+2\)
=>\(x^2+2x-4x-8+11⋮x+2\)
=>\(11⋮x+2\)
=>\(x+2\in\left\{1;-1;11;-11\right\}\)
=>\(x\in\left\{-1;-3;9;-13\right\}\)
Chú ý rằng |a| = b với b > 0 thì a = b hoặc a = - b.
a ) x ∈ − 5 8 ; 5 8 b ) x ∈ 1 12 ; 1 4
c ) x ∈ − 17 30 ; 9 10 d ) x ∈ − 19 4 ; 11 2
Bài 2:
a: =>x-1=1 hoặc x-1=-1
=>x=2 hoặc x=0
b: =>x+1=-1
hay x=-2
c: =>(135-7x):9=8
=>135-7x=72
=>7x=63
hay x=9
d: =>(x+7)(x-3)<0
=>-7<x<3
e: \(\Leftrightarrow3^{x-3}=18+9=27\)
=>x-3=3
hay x=6
f: =>4-2x=0
hay x=2
b) ĐKXĐ: \(x\ne\dfrac{1}{2}\)
Để phân số \(\dfrac{-4}{2x-1}\) là số nguyên thì \(-4⋮2x-1\)
\(\Leftrightarrow2x-1\inƯ\left(-4\right)\)
\(\Leftrightarrow2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow2x\in\left\{2;0;3;-1;5;-3\right\}\)
\(\Leftrightarrow x\in\left\{1;0;\dfrac{3}{2};-\dfrac{1}{2};\dfrac{5}{2};-\dfrac{3}{2}\right\}\)
mà x là số nguyên
nên \(x\in\left\{1;0\right\}\)(thỏa ĐK)
Vậy: \(x\in\left\{1;0\right\}\)
a) \(-\dfrac{3}{x-1}\in\) \(\mathbb{Z}\) khi x - 1 là ước của 3. Mà ước của 3 là -1; -3; 1; 3
Ta có bảng:
x - 3 | -3 | -1 | 1 | 3 |
x | 0 | 2 | 4 | 6 |
d) \(\dfrac{3x+7}{x-1}=\dfrac{3\left(x-1\right)+10}{x-1}=3+\dfrac{10}{x-1}\)
Để giá trị của biểu thức là số nguyên thì x - 1 là ước của 10.
Làm tương tự như câu a.
Các ý còn lại giống phương pháp của câu a và d
a, x+3 chia hết cho x-1
Ta có: x+3=(x+1)+2
=> 2 chia hết cho x+1
=>x+1 thuộc Ư(2)= {1, -1, 2, -2}
=> x thuộc {0,-2, 1, -3}
b.
b,3x chia hết cho x-1
c,2-x chia hết cho x+1
Ta có:
\(\dfrac{x+3}{x-1}=\dfrac{x-1+4}{x-1}=1+\dfrac{4}{x-1}\)
Để (x + 3) \(⋮\left(x-1\right)\) thì 4 \(⋮\left(x-1\right)\)
\(\Rightarrow\) x - 1 = 1; x - 1 = -1; x - 1 = 2; x - 1 = -2; x - 1 = 4; x - 1 = -4
*) x - 1 = 1
x = 2
*) x - 1 = -1
x = 0
*) x - 1 = 2
x = 3
*) x - 1 = -2
x = -1
*) x - 1 = 4
x = 5
*) x - 1 = -4
x = -3
Vậy x = 5; x = 3; x = 2; x = 0; x = -1; x = -3
a) Để phân số \(\dfrac{26}{x+3}\) nguyên thì \(26⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;2;-2;13;-13;26;-26\right\}\)
hay \(x\in\left\{-2-4;-1;-5;10;-16;23;-29\right\}\)
b) Để phân số \(\dfrac{x+6}{x+1}\) nguyên thì \(x+6⋮x+1\)
\(\Leftrightarrow5⋮x+1\)
\(\Leftrightarrow x+1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{0;-2;4;-6\right\}\)
c) Để phân số \(\dfrac{x-2}{x+3}\) nguyên thì \(x-2⋮x+3\)
\(\Leftrightarrow-5⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{-2;-4;2;-8\right\}\)
d) Để phân số \(\dfrac{2x+1}{x-3}\) nguyên thì \(2x+1⋮x-3\)
\(\Leftrightarrow7⋮x-3\)
\(\Leftrightarrow x-3\in\left\{1;-1;7;-7\right\}\)
hay \(x\in\left\{4;2;10;-4\right\}\)
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
\(b,\Rightarrow x+1-4⋮x+1\\ \Rightarrow x+1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\\ \Rightarrow x\in\left\{-5;-3;-2;0;1;3\right\}\\ c,\Rightarrow3\left(2x+1\right)-2\left(3x-2\right)⋮3x-2\\ \Rightarrow6x+3-6x+4⋮3x-2\\ \Rightarrow7⋮3x-2\\ \Rightarrow3x-2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-\dfrac{5}{3};\dfrac{1}{3}1;3\right\}\)