Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk chỉ làm câu b nha
( x-4)(\(x^2\) +1)=0
=> x -4 = 0 hoạc \(x^2\) +1=0
nếu x-4=0
=> x =4
nếu \(x^2\) +1 =0
=> \(x^2\) = -1 (loại)
vì \(x^2\) luôn > hoặc = 0 với mọi x thuộc R
=> x=4
b) (x-4)(x2+1)=0
=> x-4=0 hoặc x2+1=0
x=0+4 hoặc x2=0-1=-1
x=4 hoặc => x\(\in\phi\)
Vậy x=4
1/
-x^3 -5x^2 + 4x +4
=> x1 =-5.5877............
x2=1.1895.............
x3=-0.6018............
a) (x - 4)2 - 36 = 0
=> (x - 4)2 = 36
=> x - 4 = 6 hoặc x - 4 = -6
=> x = 10 hoặc x = -2
b) hình như sai đề bn ạ
c) x(x - 5) - 4x + 20 = 0
=> x(x - 5) - 4(x - 5) = 0
=> (x - 5)(x - 4) = 0
=> x - 5 = 0 hoặc x - 4 = 0
=> x = 5 hoặc x = 4
a) \(x^4-4x^3+12x-9=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2-3x^2+3x+9x-9=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)-3x\left(x-1\right)+9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2-3x+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-3\right)-3\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-3\right)\left(x-3\right)=0\)
\(\Leftrightarrow x-1=0\)hoặc \(x^2-3=0\)hoặc \(x-3=0\)
\(\Leftrightarrow x=1\)hoặc \(x=\pm\sqrt{3}\)hoặc \(x=3\)
Vậy tập nghiệm của phương trình là : \(S=\left\{1;\pm\sqrt{3};3\right\}\)
b) \(x^5-5x^3+4x=0\)
\(\Leftrightarrow x^5-x^3-4x^3+4x=0\)
\(\Leftrightarrow x^3\left(x^2-1\right)-4x\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^3-4x\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\pm2\)hoặc \(x=\pm1\)
Vậy tập nghiệm của phương trình là : \(S=\left\{0;\pm2;\pm1\right\}\)
c) \(x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-x^3-3x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^3\left(x-1\right)-3x^2\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-3x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x^3-2x^2-x^2+4=0\right)\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x-2\right)-\left(x-2\right)\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x-1=0\)
hoặc \(x^2+x+2=\left(x+\frac{1}{2}^2\right)+\frac{7}{4}=0\left(ktm\right)\)
hoặc \(x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2\right\}\)
c) \(\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=40\)
\(\Leftrightarrow\)\(\left(x^2+6x+5\right)\left(x^2+6x+8\right)-40=0\)
Đặt \(x^2+6x+5=t\) ta có:
\(t\left(t+3\right)-40=0\)
\(\Leftrightarrow\)\(t^2+3t-40=0\)
\(\Leftrightarrow\)\(\left(t-5\right)\left(t+8\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}t-5=0\\t+8=0\end{cases}}\)
Thay trở lại ta có: \(\orbr{\begin{cases}x^2+6x=0\\x^2+6x+13=0\end{cases}}\)
(*) \(x^2+6x=0\)
\(\Leftrightarrow\)\(x\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+6=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-6\end{cases}}\)
(*) \(x^2+6x+13=0\)
\(\Leftrightarrow\)\(\left(x+3\right)^2+4=0\) (vô lý)
Vậy......
\(A=x^2+9x+25\)
\(=x^2+2x\frac{9}{2}+\frac{81}{4}+\frac{19}{4}\)
\(=\left(x+\frac{9}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\forall x\)
Dấu"="xảy ra khi \(\left(x+\frac{9}{2}\right)^2=0\Rightarrow x=\frac{-9}{2}\)
Vậy \(Min_A=\frac{19}{4}\Leftrightarrow x=\frac{-9}{2}\)
b,\(B=4x^2-8x+\frac{21}{2}\)
\(=4\left(x^2-2x+1\right)+\frac{13}{2}\)
\(=4\left(x-1\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)
Dấu"="xảy ra khi \(4\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy \(Min_B=\frac{13}{2}\Leftrightarrow x=1\)
c,\(C=-x^2+2x+\frac{5}{2}\)
\(=-\left(x^2-2x-\frac{5}{2}\right)\)
\(=-\left(x^2-2x+1\right)+\frac{7}{2}\)
\(=-\left(x-1\right)^2+\frac{7}{2}\le\frac{7}{2}\forall x\)
Dấu"="xảy ra khi \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy\(Max_C=\frac{7}{2}\Leftrightarrow x=1\)
Bài 1.
A = x2 + 9x + 25
= ( x2 + 9x + 81/4 ) + 19/4
= ( x + 9/2 )2 + 19/4 ≥ 19/4 ∀ x
Đẳng thức xảy ra <=> x + 9/2 = 0 => x = -9/2
=> MinA = 19/4 <=> x = -9/2
B = 4x2 - 8x + 21/2
= 4( x2 - 2x + 1 ) + 13/2
= 4( x - 1 )2 + 13/2 ≥ 13/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MinB = 13/2 <=> x = 1
C = -x2 + 2x + 5/2
= -( x2 - 2x + 1 ) + 7/2
= -( x - 1 )2 + 7/2 ≤ 7/2 ∀ x
Đẳng thức xảy ra <=> x - 1 = 0 => x = 1
=> MaxC = 7/2 <=> x = 1
D = -9x2 - 12x + 27/2
= -9( x2 + 4/3x + 4/9 ) + 35/2
= -9( x + 2/3 )2 + 35/2 ≤ 35/2 ∀ x
Đẳng thức xảy ra <=> x + 2/3 = 0 => x = -2/3
=> MaxD = 35/2 <=> x = -2/3
Bài 2.
a) 4x2 + 9y2 + 12x + 12y + 13 = 0
<=> ( 4x2 + 12x + 9 ) + ( 9y2 + 12y + 4 ) = 0
<=> ( 2x + 3 )2 + ( 3y + 2 )2 = 0 (*)
\(\hept{\begin{cases}\left(2x+3\right)^2\ge0\forall x\\\left(3y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(2x+3\right)^2+\left(3y+2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}2x+3=0\\3y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=-\frac{2}{3}\end{cases}}\)
=> x = -3/2 ; y = -2/3
b) 16x2 + 4y2 - 8x + 12y + 10 = 0
<=> ( 16x2 - 8x + 1 ) + ( 4y2 + 12y + 9 ) = 0
<=> ( 4x - 1 )2 + ( 2y + 3 )2 = 0 (*)
\(\hept{\begin{cases}\left(4x-1\right)^2\ge0\forall x\\\left(2y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(4x-1\right)^2+\left(2y+3\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}4x-1=0\\2y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=-\frac{3}{2}\end{cases}}\)
=> x = 1/4 ; y = -3/2
Bài 1:
\(x^4-4x^3+12x-9=0\)
\(\Rightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)
\(\Rightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)
\(\Rightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left(x^2-3x-x+3\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[x\left(x-3\right)-\left(x-3\right)\right]\left(x^2-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-1\right)\left(x^2-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-3=0\\x-1=0\\x^2-3=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=3\\x=1\\x=\pm\sqrt{3}\end{matrix}\right.\)
Bài 2:
\(x^4-4x^3+3x^2+4x-4=0\)
\(\Rightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Rightarrow x^2\left(x^2-4x+4\right)-\left(x^2-4x+4\right)=0\)
\(\Rightarrow\left(x^2-4x+4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-2\right)^2\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-2=0\\x-1=0\\x+1=0\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
a,2x(8x-1)2(4x-1)=9(1)
<=>(8x-2)(8x-1)2.x=9
<=>8x(8x-1)2(8x-2)=8.9=72(2)
Đặt 8x-1=y ,pt (2) trở thành (y+1)y2(y-1)=72 ....... tới đây tự giải
b, tương tự ý a ,nhan 4 vào (3x+2) ,nhân 6 vào (2x+3)
c, nhân 2 vào (x+1)
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
dễ ợt
a)\(\left(x-4\right)^2=36\)
\(\Rightarrow\left(x-4\right)^2=6^2\)
\(\Rightarrow x-4=6\)
\(\Rightarrow x=6+4\)
\(\Rightarrow x=10\)
tíc mình nha
làm giùm câu b lun