\(^2\)+12x=0

b)(x-1)-(x+1)+2+0

c)(x+3).(x-1)<0

d)x<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2016

a)3x^2+12x=0

\(\Leftrightarrow\)x(3x+12)=0

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\3x+12=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

vậy x=0 và x=4

a) \(3x^2+12x=0\)

<=>\(x\left(3x+12\right)=0\)

<=>\(\orbr{\begin{cases}x=0\\3x+12=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy: \(x=0;x=4\)

Good luck:3 (Đây là bài siêu dễ -.-')

\(\left(x^2+5\right)\left(x-3\right)>0\)

Th1 : \(\hept{\begin{cases}x^2+5>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>-5\\x< 3\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x^2+5< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< -5\\x>3\end{cases}}}\)

12 tháng 12 2017

a) \(\left(x^2+5\right)\left(x-3\right)>0\Leftrightarrow x-3>0\) (do \(x^2+5>0,\forall x\in R\)).
\(\Leftrightarrow x>3\).
b) \(\left(-x^2-17\right).\left(x+1\right)>0\Leftrightarrow-\left(x^2+17\right).\left(x+1\right)>0\)\(\Leftrightarrow-\left(x+1\right)>0\) ( do \(x^2+17>0\) ).
\(\Leftrightarrow x+1< 0\Leftrightarrow x< -1\).
c) \(-2\left(7-x\right)< 0\Leftrightarrow2x-14< 0\)\(\Leftrightarrow2x< 14\)\(\Leftrightarrow x< 7\).
d) \(\left(x-2\right).\left(x+2\right)< 0\Leftrightarrow x^2+2x-2x-4< 0\)\(\Leftrightarrow x^2-4< 0\) \(\Leftrightarrow x^2< 4\)\(\Leftrightarrow\left|x\right|< 2\)\(\Leftrightarrow-2< x< 2\).

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

17 tháng 9 2020

a, ( x - 3 ) . ( x - 4 )  = 0              

=> x - 3 = 0 hoặc x - 4 = 0 

Nếu x - 3 = 0 => x = 3 

Nếu x - 4 = 0 => x = 4 

b, (\(\frac{1}{2}\)x  - 4 ) . ( x - \(\frac{1}{4}\)) = 0 

=>(  \(\frac{1}{2}\)x - 4 ) = 0    Hoặc  ( x - \(\frac{1}{4}\)) = 0 

Nếu ( \(\frac{1}{2}\)x - 4 ) = 0  => x = \(\frac{8}{1}\)

Nếu ( x - \(\frac{1}{4}\)) = 0     => x = \(\frac{1}{4}\)

c, (\(\frac{1}{3}\)- x ) . ( \(\frac{1}{2}\)+ 1 : x ) = 0 

=> ( \(\frac{1}{3}\)- x ) = 0 Hoặc ( \(\frac{1}{2}\)+ 1 : x ) = 0

Nếu (\(\frac{1}{3}\)- x ) = 0 => x = \(\frac{1}{3}\)

Nếu ( \(\frac{1}{2}\)+ 1 : x ) = 0 => x = \(\frac{-2}{1}\)

d, ( x + 3 ) . (  x - 4 ) + 2.(x + 3 ) = 0

=> (X + 3 ) = 0 Hoặc  ( x - 4 ) = 0 Hoặc 2. ( x + 3 ) = 0

Nếu x + 3 = 0 => x = 0

Nếu ( x - 4 ) = 0 => x = 4 

Nếu 2.(x + 3) = 0  => x = 3 

# Cụ MAIZ 

17 tháng 9 2020

a. ( x - 3 ) ( x - 4 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

b. \(\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)

<=> \(\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

17 tháng 9 2020

                          Bài làm :

\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Bài làm :

\(a,\left(x-3\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b,\left(\frac{1}{2}x-4\right)\left(x-\frac{1}{4}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Rightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c,\left(\frac{1}{3}-x\right).\left(\frac{1}{2}+1:x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1:x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d,\left(x+3\right)\left(x-4\right)+2\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-4+2\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Học tốt nhé

17 tháng 9 2020

          Bài làm :

\(a\text{)}...\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

\(b\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x-4=0\\x-\frac{1}{4}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{1}{2}x=4\\x=0+\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=\frac{1}{4}\end{cases}}\)

\(c\text{)}...\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}-x=0\\\frac{1}{2}+1\div x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}-0\\1\div x=-\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-2\end{cases}}\)

\(d\text{)}...\Leftrightarrow\left(x+3\right)\left(x-4+2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

26 tháng 1 2019

a) (x-2)(x+7)<0

suy ra: x-2 và x+7 trái dấu 

mà x-2 < x+7

nên x-2<0 và x+7>0

=>x<2     ;       x>-7

=> -7<x<2

vậy x € {-6;-5;-4;-3;-2;-1;0;1}

còn câu b; c; d không biết làm

26 tháng 1 2019

a, \(\left(x-2\right)\left(x+7\right)< 0\)

suy ra \(\hept{\begin{cases}x-2>0\\x+7< 0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\x+7>0\end{cases}}\)

suy ra \(\hept{\begin{cases}x>2\\x< -7\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x>-7\end{cases}}\)

suy ra \(\orbr{\begin{cases}2< x< -7\left(loại\right)\\2>x>-7\end{cases}}\)

Vậy \(2>x>-7\)

Có cách khác nhanh hơn đó là loại trường hợp ngay từ đầu

bạn lập luận như sau

do \(x-2< x+7\)

nên ta có \(\hept{\begin{cases}x-2< 0\\x+7>0\end{cases}}\).........

(nếu bắt buộc phải có 1 số âm và 1 số dương thì số bé hơn sẽ là số âm nha!)

b,Cái này cũng na ná cái trên!

điều kiện xác định \(x\ne-5\)

\(\frac{x-1}{x+5}< 0\)

suy ra \(x-1\)và \(x+5\)trái dấu 

Mà \(x+5>x-1\)

\(\Rightarrow\hept{\begin{cases}x+5>0\\x-1< 0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}x>-5\\x< 1\end{cases}\Rightarrow-5< x< 1}\)

kết hợp đkxđ

Vậy ....... (KL)

c,\(x^2-3x>0\)

\(\Rightarrow x\left(x-3\right)>0\)

\(\Rightarrow\hept{\begin{cases}x>0\\x-3>0\end{cases}}\)Hoặc \(\hept{\begin{cases}x< 0\\x-3< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x>0\\x>3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< 3\end{cases}}\)

\(\Rightarrow x>3\)hoặc \(x< 0\)

Vậy \(\orbr{\begin{cases}x>3\\x< 0\end{cases}}\)

d, \(\frac{2n-1}{x+2}< 1\)

\(\Rightarrow\frac{2n-1}{x+2}-1< 0\)

\(\Rightarrow\frac{2n-1-x-2}{x+2}< 0\)

\(\Rightarrow\frac{2n-x-3}{x+2}< 0\)

Rồi giải tương tự như bài b nha !

Bài d này sẽ có nhiều bạn nhân chéo lên như thế này

\(\Rightarrow2n-1< x+2\)

nhưng cô mk bảo là không được nhân chéo mà phải chuyển vế! nên mk làm giống cô bảo còn bạn theo cách nào thì tùy nha!

với lại cho mk hỏi cái đề bài d là sai hay đúng?

nếu đúng thì đề còn thiếu đấy! phải viết thêm n là tham số nữa mới giải được!