Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Ta có: x( x + 7 ) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
Vậy x = { 0; -7 }
b) Ta có: ( x + 12 )( x - 3 ) = 0
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
Vậy x = { -12; 3 }
c) \(\frac{2}{x}=\frac{-8}{12}\)
\(\Rightarrow x.\left(-8\right)=2.12\)
\(\Rightarrow x.\left(-8\right)=24\)
\(\Rightarrow x=24:\left(-8\right)=-3\)
Vậy x = -3
a, x(x+7)=0 b,(x+12).(x-3)=0 c,2/x= -8/12
x+7=0.x x+12=0 hoặc x-3=0 2/x= -2/3
x+7=0 x=0-12 hoặc x=0+3 2/x= 2/-3
x=0 x=-12 hoặc x=3 =>x=-3
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
\(a,\dfrac{x}{7}=\dfrac{6}{12}\\ x\cdot12=7\cdot6=42\\ x=42:12\\ x=\dfrac{7}{2}\\ b,\dfrac{-5}{x}=\dfrac{20}{28}\\ x\cdot20=\left(-5\right)\cdot28=-140\\ x=\left(-140\right):20\\ x=-7\\ c,\dfrac{x-2}{8}=\dfrac{3}{4}\\ \left(x-2\right)4=8\cdot3=24\\ x-2=24:4\\ x-2=6\\ x=6+2\\ x=8\\ d,\dfrac{x}{-5}=\dfrac{-5}{x}\\ x^2=\left(-5\right)\cdot\left(-5\right)=25\\ x=5\)
\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
a) \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Rightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy x = 2
b) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Rightarrow-3x=-48\)
\(\Leftrightarrow x=16\)
Vậy x = 16
c) \(\dfrac{1}{9}=\dfrac{-2x}{10}\)
\(\Rightarrow-18x=10\)
\(\Leftrightarrow x=-\dfrac{5}{9}\)
Vậy \(x=-\dfrac{5}{9}\)
d) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{x}-5=\dfrac{-9}{x}+2\)
\(\Leftrightarrow\dfrac{3-5x}{x}=\dfrac{-9+2x}{x}\)
\(\Rightarrow3-5x=-9+2x\)
\(\Leftrightarrow7x=12\)
\(\Leftrightarrow x=\dfrac{12}{7}\)
Vậy \(x=\dfrac{12}{7}\)
e) ĐKXĐ: \(x\ne0\)
\(\dfrac{x}{-2}=\dfrac{-8}{x}\)
\(\Rightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Vậy \(x=\pm4\)
a) Ta có: \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2\cdot5}{5}=2\)
Vậy: x=2
b) Ta có: \(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Leftrightarrow-x=\dfrac{6\cdot\left(-8\right)}{3}=-16\)
hay x=16
Vậy: x=16
b) (3.x - 24) . 73 = 2 . 74
(3.x - 24) . 343 = 4802
3.x - 24 = 4802 : 343
3.x - 24 = 14
3.x = 14 + 24
3.x = 38
Tự giải :))
c) x = 1
a) x(x+7)=0 <=> \(\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
b) (x+12)(x-3)=0 <=> \(\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
c) \(\frac{2}{x}=\frac{-8}{12}\left(x\ne0\right)\)
<=> 24=-8x
<=> x=-3 (tm)
Vậy x=-3