Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
a)\(\left(4-x\right)^2-16=0\)
\(\Leftrightarrow\left(4-x\right)^2=16\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=4\\4-x=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=8\end{cases}}}\)
b) \(25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(3-x\right)^2=25\)
\(\Leftrightarrow\orbr{\begin{cases}3-x=5\\3-x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
c)\(3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow\left(3x+6\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x+6=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=4\end{cases}}}\)
#H
1.(4-x)2-16 =0
<=> 16 -8x+x2 -16 =0
<=> -x(8-x) =0
<=> TH1: x=0
. TH2: 8-x=0
. => x= -8
2. 25 - (3-x)2 = 0
<=> 25 - (9-6x+x2) = 0
<=> 25 - 9+6x-x2 = 0
<=> -x2+6x+16 = 0
<=> -(x-8)(x+2) = 0 (bước này bạn nhập phương trình trên mtinh là nó sẽ ra nghiệm nhe)
<=> TH1:x-8=0
. x= 8
. TH2:x+2=0
. x=-2
3.(bạn tự làm nhé, giải bth thui)
a) ĐKXĐ: \(x\notin\left\{0;-5\right\}\)
Ta có: \(B=\dfrac{x^2+2x}{2x+10}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x^2+10x}\)
\(=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}-\dfrac{5x-50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+2x^2+2x^2-50-5x+50}{2x\left(x+5\right)}\)
\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
\(=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)
\(=\dfrac{x^2+5x-x-5}{2\left(x+5\right)}\)
\(=\dfrac{x\left(x+5\right)-\left(x+5\right)}{2\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x-1\right)}{2\left(x+5\right)}\)
\(=\dfrac{x-1}{2}\)
b) Để B=0 thì \(\dfrac{x-1}{2}=0\)
\(\Leftrightarrow x-1=0\)
hay x=1(nhận)
Vậy: Để B=0 thì x=1
Để \(B=\dfrac{1}{4}\) thì \(\dfrac{x-1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow4\left(x-1\right)=2\)
\(\Leftrightarrow4x-4=2\)
\(\Leftrightarrow4x=6\)
hay \(x=\dfrac{3}{2}\)(nhận)
Vậy: Để \(B=\dfrac{1}{4}\) thì \(x=\dfrac{3}{2}\)
c) Thay x=3 vào biểu thức \(B=\dfrac{x-1}{2}\), ta được:
\(B=\dfrac{3-1}{2}=\dfrac{2}{2}=1\)
Vậy: Khi x=3 thì B=1
d) Để B<0 thì \(\dfrac{x-1}{2}< 0\)
\(\Leftrightarrow x-1< 0\)
\(\Leftrightarrow x< 1\)
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Vậy: Để B<0 thì \(\left\{{}\begin{matrix}x< 1\\x\notin\left\{0;-5\right\}\end{matrix}\right.\)
Để B>0 thì \(\dfrac{x-1}{2}>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để B>0 thì x>1
Trả lời:
\(1,\left(4x-x\right)^2-16=0\)
\(\Leftrightarrow\left(3x\right)^2-16=0\)
\(\Leftrightarrow\left(3x-4\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-4=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{4}{3}\end{cases}}}\)
Vậy x = 4/3; x = - 4/3 là nghiệm của pt.
\(2,25-\left(3-x\right)^2=0\)
\(\Leftrightarrow\left(5-3+x\right)\left(5+3-x\right)=0\)
\(\Leftrightarrow\left(2+x\right)\left(8-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+x=0\\8-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}}\)
Vậy x = - 2; x = 8 là nghiệm của pt.
\(3,3x^2-6x+3-27=0\)
\(\Leftrightarrow3x^2-6x-24=0\)
\(\Leftrightarrow3\left(x^2-2x-8\right)=0\)
\(\Leftrightarrow x^2-2x-8=0\)
\(\Leftrightarrow x^2-4x+2x-8=0\)
\(\Leftrightarrow x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)
Vậy x = 4; x = - 2 là nghiệm của pt.
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)
a,Tìm ĐKXĐ
\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)
\(x\ne0\)
\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)
b) \(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}}\)
Xl chị vì e mới lớp 6 ạ !!!! Nhưng m.n nhiws k ủng hộ e nhé !!!!
ALIGATOOOOO <3
8x3-50=0
8x3 =0+50
8x3 =50
x3 =50:8
x3 =25/4 =6,25
x =1,842015749...
\(8x^3-50=0\)
\(\Rightarrow8x^3=0+50\)
\(\Rightarrow8x^3=50\)
\(\Rightarrow x^3=50\div8\)
\(\Rightarrow x^3=6,25\)
\(\Rightarrow x=\sqrt[3]{6,25}\)