Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+3)(5x+10)=0
x=-3 hoặc x=-2
Vậy \(x\in\left\{-3;-2\right\}\)
a) \(5x\left(x-7\right)-30\cdot\left(x-7\right)=0\)
\(\Rightarrow\left(5x-30\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-30=0\\x-7=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=6\\x=7\end{matrix}\right.\)
b) \(\left(2x-4\right)\left(2x+4\right)-x\left(x+3\right)=3x\left(x+5\right)\)
\(\Rightarrow4x^2-16-x^2-3x=3x^2+15x\)
\(\Rightarrow-16=18x\Rightarrow x=-\dfrac{8}{9}\)
\(1,\)
\(2x\left(x-3\right)-\left(3-x\right)=0\)
\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)
\(2,\)
\(3x\left(x+5\right)-6\left(x+5\right)=0\)
\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
\(3,\)
\(x^4-x^2=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
\(4,\)
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(5,\)
\(x\left(x+6\right)-10\left(x-6\right)=0\)
\(\Leftrightarrow x^2+6x-10x+60=0\)
\(\Leftrightarrow x^2-4x+60=0\)
\(\Leftrightarrow x^2-4x+4+56=0\)
\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)
=> Phương trình vô nghiệm
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a) x(x - 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) 3x2 - 6x = 0
=> 3x.(x - 2) = 0
=> x.(x - 2) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c) x(x - 6) + 10(x - 6) = 0
=> (x - 6)(x + 10) = 0
=> \(\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
d) x3 - x = 0
=> x.(x2 - 1) = 0
=> x.(x - 1).(x + 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
a)
\(x\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy x=0 ; x =1
b)
\(3x^2-6x=0\)
\(\Rightarrow3x\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
Vậy x=0 ; x =2
c)
\(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
Vậy x=6 ; x = -10
d)
\(x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
Vậy x = 0 ; x = 1 ; x= - 1
a) \(\Leftrightarrow x^2-36=64\)
\(\Leftrightarrow x^2=100\)
\(\Leftrightarrow x=\pm10\)
Vậy \(x=\pm10\)
b) \(\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{1;3\right\}\)
5x.(x-6)-x+6=0
=> 5x.(x-6)-(x-6)=0
=> (x-6).(5x-1)=0
=> x-6=0 hoặc 5x-1=0
=> x=6 hoặc x=1/5