Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Để\(\dfrac{-3}{x-1}\) nguyên thì \(x-1\) phải thuộc ước của \(-3\)
mà ta có \(Ư\left(-3\right)=\left\{-3;-1;1;3\right\}\)
nên \(x-1=3\Leftrightarrow x=4\)
\(x-1=1\Leftrightarrow x=2\)
\(x-1=-1\Leftrightarrow x=0\)
\(x-1=-3\Leftrightarrow x=-2\)
Vậy để \(\dfrac{-3}{x-1}\) nguyên thì \(x\in\left\{4;2;0;-2\right\}\)
b. Để \(\dfrac{-4}{2x-1}\) nguyên thì \(2x-1\) phải thuộc ước của \(-4\)
mà ta có \(Ư\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
nên \(2x-1=-4\Leftrightarrow x=\dfrac{-3}{2}\)
\(2x-1=-2\Leftrightarrow x=\dfrac{-1}{2}\)
\(2x-1=-1\Leftrightarrow x=0\)
\(2x-1=1\Leftrightarrow x=1\)
\(2x-1=2\Leftrightarrow x=\dfrac{3}{2}\)
\(2x-1=4\Leftrightarrow x=\dfrac{5}{2}\)
Vậy để\(\dfrac{-4}{2x-1}\) nguyên thì \(x\in\left\{\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2}\right\}\)
Tick nha!
Ta có :
4x+5 = 22.(x + 5) = 22x+10
Do đó 23x+2 = 22x+10
=> 3x + 2 = 2x + 10
=> 3x - 2x = 10 - 2
=> x = 8
1) \(\frac{3}{x}=\frac{y}{7}\Rightarrow xy=21\)
Suy ra : x;y thuộc Ư(21)
Mà x;y là các số nguyên nên x;y thuộc {-21;-7;-3;-1;1;3;7;21}
Ta có bảng giá trị sau:
x | -21 | 21 | -1 | 1 | -3 | 3 | -7 | 7 |
y | -1 | 1 | -21 | 21 | -7 | 7 | 3 | 3 |
Vậy các cặp số nguyên x;y tìm được là : .............
2) \(\frac{-8}{3x-1}=-\frac{4}{7}\Rightarrow4\left(3x-1\right)=56\Leftrightarrow3x-1=14\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy x=5
a,\(\dfrac{3x+5}{x-2}=3+\dfrac{11}{x-2}\)
\((3x+5)\vdots (x-2)\) \(\Rightarrow\)\(\dfrac{3x+5}{x-2}\)nguyên \(\Rightarrow \dfrac{11}{x-2}\)nguyên
\(\Rightarrow 11\vdots(x-2)\Rightarrow (x-2)\in Ư(11)=\{\pm1;\pm11\}\)
\(\Rightarrow x\in\{-9;1;3;13\}\)
b,\(\dfrac{2-4x}{x-1}=-4-\dfrac{2}{x-1}\)
\((2-4x)\vdots(x-1)\Rightarrow \dfrac{2-4x}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
c,\(\dfrac{x^{2}-x+2}{x-1}=\dfrac{x(x-1)+2}{x-1}=x+\dfrac{2}{x-1}\)
\((x^{2}-x+2)\vdots(x-1)\)\(\Rightarrow \dfrac{x^{2}-x+2}{x-1}\)nguyên \(x+\dfrac{2}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
d,\(\dfrac{x^{2}+2x+4}{x+1}=\dfrac{(x+1)^{2}+3}{x+1}=x+1+\dfrac{3}{x+1}\)
\((x^{2}+2x+4)\vdots(x+1)\Rightarrow \dfrac{x^{2}+2x+4}{x+1}\in Z\Rightarrow \dfrac{3}{x+1}\in Z\\\Rightarrow3\vdots(x+1)\Rightarrow (x+1)\in Ư(3)=\{\pm1;\pm3\}\\\Rightarrow x\in\{-4;-2;0;2\}\)
(3x/7 + 1) = - 1/8 . (-4)
3x/7 + 1 = 1/2
3x/7 = 1/2 - 1
3x/7 = -1/2
3x = -1/2 .7
3x= -7/2
x= -7/2 : 3 = -7/6
x + 2x + 3x + ⋯ + 10x = -165
\(\Leftrightarrow\)\(\left(1+2+3+4+5+6+7+8+9+10\right)x=-165\)
\(\Leftrightarrow55x=-165\)
\(\Leftrightarrow x=\frac{-165}{55}=-3\)
Vậy, \(x=-3\)
=> { [ 10 . ( 10 + 1 ) ] : 2 } . x = - 165
=> [ ( 10.11 ) : 2 ] . x = - 165
=> ( 110 : 2 ) . x = - 165
=> 55 . x = - 165
=> x = - 165 : 55
=> x = - 3
Vậy x = - 3
Ta có :
3x + 4y - xy = 15
=> (4 - x)(y - 3) = 3 = 1 . 3 = 3 . 1 = (-1) . (-3) = (-3) . (-1)
Xét các trường hợp trên là ra
Nếu x,y thuộc Z
suy ra phương trình tương đương với y(4-x)-3(4-x)=15-12
suy ra (4-x)(y-3)=3
Xét các trường hợp
4-x=1 thì y-3=3
4-x=-1 thì y-3= -3
4-x =3 thì y-3=1
4-x= -3 thì y-3= -1
giải các trường hợp ra tìm x và y
x.(4/3-1)=3/5
x.1/3=3/5
x=3/5:1/3
x=9/5
\(\frac{4}{3}x-x=60\%\)
<=>\(\frac{1}{3}x=60\%\)
<=>x=\(60\%:\frac{1}{3}\)
<=> x=180%