Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^x+2^{2x}+2^{3x}=4368\)
\(\Rightarrow2^x+2^x.4+2^x.8=4368\)
\(\Rightarrow2^x.\left(1+4+8\right)=4368\)
\(\Rightarrow2^x.13=4368\)
\(\Rightarrow2^x=4368:13=336\)
\(336=2^4.3.7\)
Do đó không tồn tại số tự nhiên x thỏa mãn
3(x-2)-4(2x+1)-5(2x+3)=50
<=>(3x-6)-(8x+4)-(10x+15)=50
<=>3x-6-8x-4-10x-15=50
<=>(3x-8x-10x)+(-6-4-15)=50
<=>-15x-25=50
<=>-15x=75
<=>x=-5
\(3\frac{1}{2}:\left(4-\frac{1}{3}\left|2x+1\right|\right)=\frac{21}{22}\)
<=>\(4-\frac{1}{3}\left|2x+1\right|=\frac{7}{2}:\frac{21}{22}=\frac{11}{3}\)
<=>\(\frac{1}{3}\left|2x+1\right|=4-\frac{11}{3}=\frac{1}{3}\)
<=>\(\left|2x+1\right|=1\)
<=>2x+1=1 hoặc 2x+1=-1
<=>2x=0 hoặc 2x=-2
<=>x=0 hoặc x=-2
Vậy......................
Vì \(\left(2x+1\right)\left(y-3\right)=12\)
\(\Rightarrow2x+1;y-3\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Vì \(2x+1\) là số lẻ nên \(2x+1\in\left\{-3;-1;1;3\right\}\)
Ta có bảng sau:
2x+1 | -3 | -1 | 1 | 3 |
2x | -4 | -2 | 0 | 2 |
x | -2 | -1 | 0 | 1 |
y-3 | -4 | -12 | 12 | 4 |
y | -1 | -9 | 15 | 7 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-1\right);\left(-1;-9\right);\left(0;15\right);\left(1;7\right)\right\}\)
Ta có:
\(xy+3x-7y=21\)
\(\Rightarrow x.\left(y+3\right)-7y-21=21-21=0\)
\(x\left(y+3\right)-\left(21+7y\right)=0\)
\(x.\left(y+3\right)-7.\left(y+3\right)=0\)
\(\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow x-7=0\) hoặc \(y+3=0\)
TH1: x-7=0
x=0+7=7
TH2:y+3=0
y=0-3=-3
Vậy x=7; y=-3
a,\(\dfrac{3x+5}{x-2}=3+\dfrac{11}{x-2}\)
\((3x+5)\vdots (x-2)\) \(\Rightarrow\)\(\dfrac{3x+5}{x-2}\)nguyên \(\Rightarrow \dfrac{11}{x-2}\)nguyên
\(\Rightarrow 11\vdots(x-2)\Rightarrow (x-2)\in Ư(11)=\{\pm1;\pm11\}\)
\(\Rightarrow x\in\{-9;1;3;13\}\)
b,\(\dfrac{2-4x}{x-1}=-4-\dfrac{2}{x-1}\)
\((2-4x)\vdots(x-1)\Rightarrow \dfrac{2-4x}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
c,\(\dfrac{x^{2}-x+2}{x-1}=\dfrac{x(x-1)+2}{x-1}=x+\dfrac{2}{x-1}\)
\((x^{2}-x+2)\vdots(x-1)\)\(\Rightarrow \dfrac{x^{2}-x+2}{x-1}\)nguyên \(x+\dfrac{2}{x-1}\)nguyên\(\Rightarrow \dfrac{2}{x-1}\)nguyên
\(\Rightarrow 2\vdots(x-1)\Rightarrow (x-1)\inƯ(2)=\{\pm1;\pm2\}\\\Rightarrow x\in\{-1;0;2;3\}\)
d,\(\dfrac{x^{2}+2x+4}{x+1}=\dfrac{(x+1)^{2}+3}{x+1}=x+1+\dfrac{3}{x+1}\)
\((x^{2}+2x+4)\vdots(x+1)\Rightarrow \dfrac{x^{2}+2x+4}{x+1}\in Z\Rightarrow \dfrac{3}{x+1}\in Z\\\Rightarrow3\vdots(x+1)\Rightarrow (x+1)\in Ư(3)=\{\pm1;\pm3\}\\\Rightarrow x\in\{-4;-2;0;2\}\)
a. Để\(\dfrac{-3}{x-1}\) nguyên thì \(x-1\) phải thuộc ước của \(-3\)
mà ta có \(Ư\left(-3\right)=\left\{-3;-1;1;3\right\}\)
nên \(x-1=3\Leftrightarrow x=4\)
\(x-1=1\Leftrightarrow x=2\)
\(x-1=-1\Leftrightarrow x=0\)
\(x-1=-3\Leftrightarrow x=-2\)
Vậy để \(\dfrac{-3}{x-1}\) nguyên thì \(x\in\left\{4;2;0;-2\right\}\)
b. Để \(\dfrac{-4}{2x-1}\) nguyên thì \(2x-1\) phải thuộc ước của \(-4\)
mà ta có \(Ư\left(-4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
nên \(2x-1=-4\Leftrightarrow x=\dfrac{-3}{2}\)
\(2x-1=-2\Leftrightarrow x=\dfrac{-1}{2}\)
\(2x-1=-1\Leftrightarrow x=0\)
\(2x-1=1\Leftrightarrow x=1\)
\(2x-1=2\Leftrightarrow x=\dfrac{3}{2}\)
\(2x-1=4\Leftrightarrow x=\dfrac{5}{2}\)
Vậy để\(\dfrac{-4}{2x-1}\) nguyên thì \(x\in\left\{\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2}\right\}\)
Tick nha!
x + 2x + 3x + ⋯ + 10x = -165
\(\Leftrightarrow\)\(\left(1+2+3+4+5+6+7+8+9+10\right)x=-165\)
\(\Leftrightarrow55x=-165\)
\(\Leftrightarrow x=\frac{-165}{55}=-3\)
Vậy, \(x=-3\)
=> { [ 10 . ( 10 + 1 ) ] : 2 } . x = - 165
=> [ ( 10.11 ) : 2 ] . x = - 165
=> ( 110 : 2 ) . x = - 165
=> 55 . x = - 165
=> x = - 165 : 55
=> x = - 3
Vậy x = - 3