Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x( 2x + 3) -(2x+5)(3x-2)=8
<=> 6x^2+9x-6x^2+4x-15x+10=8
<=> -2x+10=8
<=> -2x= 8-10 = -2
<=> x=1
b) (3x-4)(2x+1)-(6x+5)(x-3)=3
<=> 6x^2+3x-8x-4-6x^2+18x-5x+15=3
<=> -8x+11=3
<=> -8x= -8
<=> x=1
c, 2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
<=> 2(6x^2+15x-2x-5)-6(2x^2+4x-x-2)=6
<=> 2(6x^2+13x-5)-6(2x^2+3x-2)=6
<=> 12x^2+ 26x-10-12x^2-18x+12=6
<=> 8x+2=6
<=> 8x=4
<=> x= 1/2
d, 3xy(x+y)-(x+y)(x^2 +y^2+2xy)+y^3=27
<=> 3x2y+3xy2-(x+y)(x+y)2+y3=27
<=> 3x2y+3xy2-(x+y)3+y3=27
<=> 3x2y +3xy2 -x3-3x2y-3xy2-y3+y3=27
<=> -x3=27
<=> x= \(-\sqrt[3]{27}\)= -3
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
\(5x\left(6-x\right)+\left(5x-3\right)x=27\)
\(30x-5x^2+5x^2-3x=27\)
\(27x=27\)
\(x=1\)
Vậy \(x=1\)
\(3\left(2x-1\right)-5\left(x-3\right)+6.\left(3x-4\right)=83\)
\(6x-3-5x+15+18x-24=83\)
\(19x-12=83\)
\(19x=95\)
\(x=\frac{95}{19}\)
\(x=5\)
Vậy \(x=5\)
\(5x.\left(6-x\right)+\left(5x-3\right)x=27\)
\(\Rightarrow30x-5x^2+5x^2-3x=27\)
\(\Rightarrow\left(30x-3x\right)-\left(5x^2-5x^2\right)=27\)
\(\Rightarrow27x=27\)
\(\Rightarrow x=\)................................................(XIn lỗi em không biết chia :D)
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
a) 4(x + 3)(3x - 2) - 3(x - 1)(4x - 1) = -27
<=> 4(3x2 + 7x - 6) - 3(4x2 - 5x + 1) = -27
<=> 12x2 + 28x - 24 - 12x2 + 15x - 3 = -27
<=> 43x = 0 <=> x = 0
Vậy nghiệm là x = 0
b) Đề không rõ, mình sửa lại đề nha:
4x(2x2 - 1) + 27 = (4x2 + 6x + 9)(2x + 3)
<=> 8x3 - 4x + 27 = 8x3 + 24x2 + 36x + 27
<=> 24x2 + 40x = 0 <=> x = 0 hay x = -5/3
Vậy nghiệm là x = 0 hay x = -5/3
(2x-5)3+27(x-1)3+(8-5x)3=0
<=>(2x-5)3+33(x-1)3+(8-5x)3=0
<=>(2x-5)3+(3x-3)3+(8-5x)3=0
Đặt a=2x-5
b=3x-3
c=8-5x
=>a+b+c=2x-5+3x-3+8-5x=0
và a3+b3+c3=0(theo đề bài ta có)
ta có (a+b+c)3=(a+b)3+3(a+b)2c+3(a+b)c2+c3
=a3+b3+c3+3a2b+3ab2+3(a+b)2c+3(a+b)c2
=a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)(ab+c(a+b+c)
=a3+b3+c3+3(a+b)(ab+ca+cb+c2)
=a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]
=a3+b3+c3+3(a+b)(b+c)(c+a)
Mà a+b+c=0 và a3+b3+c3=0 nên
3(a+b)(b+c)(c+a)=0
<=>(a+b)(b+c)(c+a)=0
<=>(2x-5+3x-3)(3x-3+8-5x)(8-5x+2x-5)=0
<=>(5x-8)(-2x+5)(-3x-3)=0
<=>5x-8=0 hoặc -2x+5=0 hoặc -3x-3=0
<=> x =8/5 hoặc x =5/2 hoặc x =-1