Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) -12+3.(-x+7)=-18
3.(-x+7)=-18+12
3.(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
1/(2.x-5)+17=6
=> 2x - 5 = -11
=> 2x = -6
=> x = 3
vậy_
2/10-2.(4-3x)=-4
=> 2(4 - 3x) = 14
=> 4 - 3x = 7
=> 3x = -3
=> x = -1
3/-12+3.(-x+7)=-18
=> 3(-x+7) = -6
=> -x+7 = -2
=> -x = -9
=> x = 9
4/24:(3.x-2)=-3
=> 3x - 2 = -8
=> 3x = -6
=> x = -2
5/-45:5.(-3-2.x)=3
=> 5(-3 - 2x) = -15
=> -3 - 2x = -3
=> - 2x = 0
=> x = 0
6/x.(x+7)=0
=> x = 0 hoặc x + 7 = 0
=> x = 0 hoặc x = -7
7/(x+12).(x-3)=0
=> x + 12 = 0 hoặc x - 3 = 0
=> x = -12 hoặc x = 3
8/(-x+5).(3-x)=0
=> -x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
9/x.(2+x).(7-x)=0
=> x = 0 hoặc 2 + x = 0 hoặc 7 - x = 0
=> x = 0 hoặc x = -2 hoặc x = 7
10/(x-1).(x+2).(-x-3)=0
=> x - 1 = 0 hoặc x + 2 = 0 hoặc -x-3 = 0
=> x = 1 hoặc x = -2 hoặc x = -3
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
1, => x + 12 = 0 => x = -12
x - 3 = 0 => x = 3
=> x \(\in\) { -12; 3 }
1; (\(x\) + 12)(\(x\) - 3) = 0
\(\left[{}\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -12; 3}
1,x(x + 7) = 0
\(\Rightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
2, \(\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
3. \(\left(-x+5\right).\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4. \(x\left(2+x\right).\left(7-x\right)=0\)
=> x = 0 ; 2 + x = 0; 7 - x = 0 => x = 0; x = -2 hoặc x = 7
5 , tự làm
x.(x+7)=0
x=0 hoặc x+7=0
x=0hoặc x=0-7
x=0 hoặc x=-7
vậy x thuộc 0 hoặc 7
1/\(x.\left(x+7\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=0-7\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
2/\(\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0-12\\x=0+3\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
3/\(\left(-x+5\right).\left(3-x\right)\)
\(\Rightarrow\left[\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}-x=0-5\\x=3-0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}-x=-5\\x=3\end{matrix}\right.\)
4/\(x.\left(2+x\right).\left(7-x\right)\)
\(\Rightarrow\left[\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=0-2\\x=7-0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
5/\(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-1=0\\x+2=0\\-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0+1\\x=0-2\\-x=0+3\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=1\\x=-2\\-x=3\end{matrix}\right.\)
a) x=0 hoặc x+7=0
suy ra x=0 hoặc x=-7
b) x+12=0 hoặc x-3=0
x=-12 hoặc x=3
c) x=0 hoặc x+2=0 hoặc 7-x=0
x=0 hoặc x=-2 hoặc x=7
d) x-1=0 hoặc x+2=0 hoặc -x-3=0
suy ra x=1 hoặc x=-2 hoặc x=-3
Bài làm
x( x + 7 ) = 0
<=> x = 0 hoẵ x + 7 = 0
=> x = 0 hoặc x = -7
Vậy x = 0 hoặc x = -7
( x + 12 )( x - 3 ) = 0
<=> x + 12 = 0 hoặc x - 3 = 0
=> x = -12 hoặc x = 3
Vậy x = -12 hoặc x = 3
( -x + 5 )( 3 - x ) = 0
<=> -x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
Vậy x = 5 hoặc x = 3
x( 2 + x )( 7 - x ) = 0
<=> x = 0 hoặc 2 + x = 0 hoặc 7 - x = 0
=> x = 0 hoặc x = -2 hoặc x = 7
Vậy x = 0 hoặc x = -2 hoặc x j 7
( x - 1 )( x + 2 )( -x - 3 ) = 0
<=> ( x - 1 ) = 0 hoặc x + 2 = 0 hoặc ( -x - 3 ) = 0
<=> x = 1 hoăc x = -2 hoặc x = ( -3)
Vậy x = 1 hoặc x = 2 hoặc x = -3
1. x(x + 7) = 0
=> x = 0
x + 7 = 0 => x = -7
Vậy x = 0 ; -7
2. (x + 12)(x - 3) = 0
x + 12 = 0 => x = -12
x - 3 = 0 => x = 3
Vậy x = -12 ; 3
3. (-x + 5)(3 - x) = 0
-x + 5 = 0 => -x = -5 => x = 5
3 - x = 0 => x = 3
Vậy z = 5 ; 3
4. x(2 + x)(7 - x) = 0
=> x = 0
2 + x = 0 => x = -2
7 - x = 0 => x = 7
Vậy x = 0 ; -2 ; 7
5. (x - 1)(x + 2)(-x - 3) = 0
x - 1 = 0 => x = 1
x + 2 = 0 => x = -2
-x - 3 = 0 => -x = 3 => x = -3
Vậy x = 1 ; -2 ; -3
\(x+\left(x+7\right)=0\)
+) \(x=0\)
+) \(x+7=0=>x=-7\)
Vậy x=0 hoặc x=-7
\(\left(x+12\right).\left(x-3\right)=0\)
+) \(x+12=0=>x=-12\)
+) \(x-3=0=>x=3\)
Vậy x=-12 hoặc x=3
\(x.\left(2+x\right).\left(7-x\right)=0\)
+) \(x=0\)
+) \(2+x=0=>x=-2\)
+) \(7-x=0=>x=7\)
Vậy x=0 hoặc x=-2 hoặc x=7
\(\left(x-1\right).\left(x+2\right).\left(x+3\right)=0\)
+) \(x-1=0=>x=1\)
+) \(x+2=0=>x=-2\)
+) \(x+3=0=>x=-3\)
Vậy x=1 hoặc x=-2 hoặc x=-3
1/ ( x+12)(3-x)=0
=> \(\orbr{\begin{cases}x+12=0\\3-x=0\end{cases}}\)
=>\(\orbr{\begin{cases}x=-12\\x=3\end{cases}}\)
\(\left(x+12\right)\left(3-x\right)=0\)