\(\sqrt{x^2-6x+13=0}\)

2) \(\sqrt{x^2+4}=x+2\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

\(\sqrt{x^2-6x+13}=0\)

\(\Leftrightarrow x^2-6x+13=0\)

\(\Leftrightarrow x^2-6x+9+4=0\)

\(\Leftrightarrow\left(x-3\right)^2+4=0\)

Mà: \(\left(x+3\right)^2+4\ge4>0\forall x\)

=> Không có giá trị của x thỏa mãn

\(\sqrt{x^2+4}=x+2\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=\left(x+2\right)^2\\x+2>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2+4=x^2+4x+4\\x>-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\left(tm\right)\\x>-2\end{cases}}\)

Vậy: PT có tập nghiệm S = { 0 }

=.= hk tốt!!

25 tháng 7 2017

ĐKXĐ các bài bạn tự tìm nhé!

a)\(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)

<=>\(\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)

Bình phương 2 vế

=>\(10x-1-2\sqrt{\left(8x+1\right)\left(2x-2\right)}=10x-1-2\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

<=>\(\sqrt{\left(8x+1\right)\left(2x-2\right)}=\sqrt{\left(7x+4\right)\left(3x-5\right)}\)

=>16x2-14x-2=21x2-23x-20

<=>5x2-9x-18=0

<=>x=3 hoặc x=\(-\dfrac{6}{5}\)

Sau đó thử lại nghiệm xem có thõa mãn không (dù tìm ĐKXĐ rồi vẫn phải thử nhé)

b)

\(\sqrt{x+3-4\sqrt{x-1}+\sqrt{x+8-6\sqrt{x-1}}}=1\)

<=>\(\sqrt{\left(\sqrt{x-1}-2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=1\)

<=>\(\left|\sqrt{x-1}-2\right|+\left|\sqrt{x-1}-3\right|=1\)

*)x\(\ge10\)

<=>\(\sqrt{x-1}-2+\sqrt{x-1}-3=1\)

<=>\(2\sqrt{x-1}=6\)

<=>x=10(TM)

*)5\(\le x< 10\)

<=>\(\sqrt{x-1}-2+3-\sqrt{x-1}=1\left(LĐ\right)\)

*)1\(\le x< 5\)

<=>\(2-\sqrt{x-1}+3-\sqrt{x-1}=1\)

<=>\(2\sqrt{x-1}=4\)

<=>x=5(L)

Vậy 5\(\le x\le10\)

c)\(\sqrt{6-x}+\sqrt{x+2}=x^2-6x+13\)

Vế phải:x2-6x+9+4=(x-3)2+4\(\ge4\)(1)

Vế trái: Áp dụng BĐT Bunhia

Ta có:\(\left(\sqrt{6-x}+\sqrt{x+2}\right)^2\le\left(1+1\right)\left(6-x+x+2\right)=16\)

=>Vế trái \(\le4\)(2)

Từ 1 và 2=>Phương trình tương đương:\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\6-x=x+2\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)(L)

Vậy PTVN

d)\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)

<=>\(\sqrt{x^2-x}=-\sqrt{x^2+x-2}\)

Bình phương 2 vế

=>x2-x=x2+x-2

<=>2x=2

<=>x=1

Thử lại thõa mãn Vậy x=1

25 tháng 7 2017

1) + ĐK : tự xử

+ pt đã cho \(\Leftrightarrow\sqrt{8x+1}-\sqrt{2x-2}=\sqrt{7x+4}-\sqrt{3x-5}\)

\(\Rightarrow8x+1-2x+2-2\sqrt{16x^2-14x-2}=7x+4-3x+5-2\sqrt{21x^2-23x-20}\)

\(\Rightarrow10x-1-2\sqrt{16x^2-14x-2}=10x-1-\sqrt{21x^2-23x-20}\)

\(\Rightarrow16x^2-14x-2=21x^2-23x-20\Rightarrow5x^2-9x-18=0\Rightarrow\left[{}\begin{matrix}x=3\left(N\right)\\x=-\dfrac{6}{5}\left(L\right)\end{matrix}\right.\)

kl: x=5

P/s: + x=5 có nhận hay không phụ thuộc vào đk ở đầu bài, bạn tự giải rồi xét

+ bài này dùng dấu => , không dùng <=>, dùng <=> được nửa số điểm, nếu là gv khó tính sẽ gạch toàn bộ bài

5 tháng 7 2019

\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=3\Leftrightarrow\left|x-1\right|+\left|x-2\right|=3\) \(+,x\ge2\Rightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1\ge1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-2\right|=x-2\\\left|x-1\right|=x-1\end{matrix}\right.\Rightarrow\left|x-2\right|+\left|x-1\right|=x-2+x-1=3\Leftrightarrow2x-3=3\Leftrightarrow x=3\left(\text{t/m}\right)\) \(+,1\le x< 2\Rightarrow\left\{{}\begin{matrix}x-1\ge0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=x-1\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=x-1+2-x=1\left(l\right)\) \(+,x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|x-1\right|=-\left(x-1\right)=1-x\\\left|x-2\right|=-\left(x-2\right)=2-x\end{matrix}\right.\Rightarrow\left|x-1\right|+\left|x-2\right|=1-x+2-x=3\Leftrightarrow3-2x=3\Leftrightarrow x=0\left(\text{t/m}\right)\) \(f,\left\{{}\begin{matrix}\sqrt{x^2-9}\ge0\\\sqrt{x^2-6x+9}\ge0\end{matrix}\right.mà:\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2-9}=0\\\sqrt{x^2-6x+9}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\sqrt{\left(x-3\right)^2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-9=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow x=3\)\thay vào ta thấy thoa man => x=3

5 tháng 7 2019

\(ĐK:x\ge4\)\(\sqrt{x^2+x-20}=\sqrt{x^2+5x-4x-20}=\sqrt{x\left(x+5\right)-4\left(x+5\right)}=\sqrt{\left(x-4\right)\left(x+5\right)}=\sqrt{x-4}.\sqrt{x+5}=\sqrt{x-4}\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-4}=0\\\sqrt{x+5}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x+5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=-4\left(l\right)\end{matrix}\right.\Rightarrow x=4\) \(b,ĐK:x\le2;\sqrt{x+1}+\sqrt{2-x}=\sqrt{6}\Leftrightarrow x+1+2-x+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow3+2\sqrt{\left(x+1\right)\left(2-x\right)}=6\Leftrightarrow2\sqrt{\left(x+1\right)\left(2-x\right)}=3\Leftrightarrow\sqrt{\left(x-1\right)\left(2-x\right)}=1,5\Leftrightarrow\left(x-1\right)\left(2-x\right)=\frac{9}{4}\Leftrightarrow\left(x-1\right)\left(x-2\right)=-\frac{9}{4}\Leftrightarrow x^2-3x+2=-\frac{9}{4}\Leftrightarrow x^2-3x+\frac{9}{4}=-2\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-2\Rightarrow vonghiem\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

11 tháng 6 2018

a) Ta có: \(\sqrt{x^2+6x+9}=3x-1\)

\(\Rightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Rightarrow\)\(x+3=3x-1\)

\(\Rightarrow x-3x=-1-3\Rightarrow-2x=-4\Rightarrow x=2\).

b) \(\sqrt{x^4}=7\)

\(\Rightarrow x^2=7\)

\(\Rightarrow x=-7\)hoặc \(x=7\).

c) Ta có: \(x^2+2\sqrt{13}x=-13\)

\(\Rightarrow x^2+2\sqrt{13}x+13=0\)

\(\Rightarrow\left(x+\sqrt{13}\right)^2=0\Rightarrow x+\sqrt{13}=-\sqrt{13}\).

Chúc bn hc tốt!

11 tháng 6 2018

a) \(\sqrt{x^2+6x+9}=3x-1\)

  Ta thấy vế trái là căn bậc hai nên là số không âm => vế phải cũng phải là số không âm

=> \(3x-1\ge0\Rightarrow x\ge\frac{1}{3}\)

Khi đó phương trình tương đương với:

  \(\sqrt{\left(x+3\right)^2}=3x-1\)

 \(\Leftrightarrow\left|\left(x+3\right)\right|=3x-1\)

Do \(x\ge\frac{1}{3}\) nên \(x+3>0\), phương trình trên trở thành:

  \(x+3=3x-1\)

\(\Leftrightarrow x=2\)

Đối chiếu với điều kiện \(x\ge\frac{1}{3}\) thì x =2 thỏa mãn

b) \(\sqrt{x^4}=7\)

   \(\Leftrightarrow x^2=7\)

  \(\Leftrightarrow x=\pm\sqrt{7}\)

c) \(x^2+2\sqrt{13}x+13=0\)

  \(\Leftrightarrow x^2+2\sqrt{13}x+\sqrt{13}^2=0\)

  \(\Leftrightarrow\left(x+\sqrt{13}\right)^2=0\)

  \(\Leftrightarrow x=-\sqrt{13}\)

18 tháng 6 2019

Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618

18 tháng 6 2019

App giải toán không cần nhập đề chỉ cần chụp ảnh cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618

8 tháng 6 2017

2) Dễ thấy\(\left(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=x^2-6x+13-x^2+6x-10=3\)

\(\Leftrightarrow1.\left(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\right)=3\)

\(\Leftrightarrow\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}=3\)

9 tháng 6 2017

Ta có:  a+ b= \(\frac{-1+\sqrt{2}}{2}\)    +    \(\frac{-1-\sqrt{2}}{2}\)=  -1

a*b  =  \(\frac{-1+\sqrt{2}}{2}\)*   \(\frac{-1-\sqrt{2}}{2}\)=   -\(\frac{1}{4}\)

a2  +   b2  =  (a+ b)2  -  2ab  = 1+ \(\frac{1}{2}\)=  \(\frac{3}{2}\)

a4  +  b4  =    (a2  +   b2 )2  -  2a2b2  =  \(\frac{9}{4}\)-   \(\frac{1}{8}\)=  \(\frac{17}{8}\)

a3  +   b3  =  ( a + b)3  -  3ab(a + b )  = -1-\(\frac{3}{4}\)\(\frac{-7}{4}\)

vay a7  +  b7  = (a3 +  b3 )(a4 + b4 ) -a3b3(a+b)=  \(\frac{-7}{4}\)*   \(\frac{17}{8}\)-  (-\(\frac{1}{64}\))  * (-1)  = \(\frac{-239}{64}\)

17 tháng 7 2017

Ta có :

\(\sqrt{x^2-6x+13}-\sqrt{x^2-6x+10}\)

=\(\sqrt{x^2-2.3.x+3^2+4}-\sqrt{x^2-2.3.x+3^2+1}\)

=\(\sqrt{\left(x-3\right)^2+2^2}-\sqrt{\left(x-3\right)^2+1^2}\)

23 tháng 8 2017

Ta có :

\(\sqrt{x^2-6x+13}+\sqrt{x^2-6x+10}\)

\(=\sqrt{x^2-6x+9+4}+\sqrt{x^2-6x+9+1}\)

\(=\sqrt{\left(x-3\right)^2+2^2}+\sqrt{\left(x-3\right)^2+1}\)

8 tháng 7 2017

a)\(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\left(\sqrt{x^2-2x+1}-3\right)-\left(\sqrt{x^2-4x+4}-2\right)=x-3-1\)

\(\Leftrightarrow\frac{x^2-2x+1-9}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x+4-4}{\sqrt{x^2-4x+4}+2}=x-4\)

\(\Leftrightarrow\frac{x^2-2x-8}{\sqrt{x^2-2x+1}+3}-\frac{x^2-4x}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\frac{\left(x+2\right)\left(x-4\right)}{\sqrt{x^2-2x+1}+3}-\frac{x\left(x-4\right)}{\sqrt{x^2-4x+4}+2}-\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1\right)=0\)
Dễ thấy: \(\frac{x+2}{\sqrt{x^2-2x+1}+3}-\frac{x}{\sqrt{x^2-4x+4}+2}-1< 0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}=1\)

\(\Leftrightarrow\left(\sqrt{x^2-6x+9}-\frac{7}{2}\right)-\left(\sqrt{x^2+6x+9}-\frac{5}{2}\right)=0\)

\(\Leftrightarrow\frac{x^2-6x+9-\frac{49}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{x^2+6x+9-\frac{25}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{4x^2-24x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{4x^2+24x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\frac{\frac{\left(2x-13\right)\left(2x+1\right)}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{\left(2x+1\right)\left(2x+11\right)}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}=0\)

\(\Leftrightarrow\left(2x+1\right)\left(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}\right)=0\)

Dễ thấy: \(\frac{\frac{2x-13}{4}}{\sqrt{x^2-6x+9}+\frac{7}{2}}-\frac{\frac{2x+11}{4}}{\sqrt{x^2+6x+9}+\frac{5}{2}}< 0\)

\(\Rightarrow2x+1=0\Rightarrow x=-\frac{1}{2}\)

c)Áp dụng BĐT CAuchy-Schwarz ta có:

\(P^2=\left(\sqrt{x-2}+\sqrt{4-x}\right)^2\)

\(\le\left(1+1\right)\left(x-2+4-x\right)\)

\(=2\cdot\left(x-2+4-x\right)=2\cdot2=4\)

\(\Rightarrow P^2\le4\Rightarrow P\le2\)