K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\)    =>  \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)

Vậy x,y,z lần lượt là 20; 12; 42

20 tháng 6 2019

#)Giải :

Bài 2 :

d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow2k.3k.5k=810\)

\(\Rightarrow30k^3=810\)

\(\Rightarrow k^3=3\)

\(\Rightarrow k=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)

Vậy x = 6; y = 9; z = 15

23 tháng 9 2020

\(A=2x^2+2xy+y^2-2x+2y+2\)

\(=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+x^2-4x+4-3\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]+\left(x-2\right)^2-3\)

\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\forall x,y\)

Dấu"="xảy ra khi \(\orbr{\begin{cases}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}y=-3\\x=2\end{cases}}}\)

Vậy.....

23 tháng 9 2020

A = 2x2 + 2xy + y2 - 2x + 2y + 2

= ( x2 + 2xy + y2 + 2x + 2y + 1 ) + ( x2 - 4x + 4 ) - 3

= [ ( x + y )2 + 2( x + y ) + 12 ] + ( x - 2 )2 - 3

= ( x + y + 1 )2 + ( x - 2 )2 - 3 ≥ -3 ∀ x, y

Dấu "=" xảy ra <=> x = 2 ; y = -3

=> MinA = -3 <=> x = 2 ; y = -3

B thì nhờ các cao nhân khác ._. Em tịt rồi

12 tháng 12 2018

Với \(y=13\)\(\Rightarrow|2x-1|+|4-2x|+10=13\)

                       \(\Rightarrow|2x-1|+|4-2x|=3\)

Vì \(3>0\)\(\Rightarrow2x-1\ge0\)và \(4-2x\ge0\)

Lập bảng giá trị ta có:

2x - 10123
x\(\frac{1}{2}\)1\(\frac{3}{2}\)2
4 - 2x3210
x\(\frac{1}{2}\)1\(\frac{3}{2}\)2

Vậy \(x\in\left\{\frac{1}{2};1;\frac{3}{2};2\right\}\)

bài làm mang tính chất hướng dẫn.. 

\(\left|2x-1\right|+\left|4-2x\right|+10=13\)

\(VT=\left|2x-1\right|+\left|4-2x\right|+10\ge\left|2x-1+4-2x\right|+10=3+10=13=VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-1\right)\left(4-2x\right)\ge0\)

TH1 : \(\hept{\begin{cases}2x-1\ge0\\4-2x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le2\end{cases}\Leftrightarrow}\frac{1}{2}\le}x\le2\)( nhận ) 

TH2 : \(\hept{\begin{cases}2x-1\le0\\4-2x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\ge2\end{cases}}}\) ( loại ) 

Vậy \(\frac{1}{2}\le x\le2\)

... 

Có biểu thức \(A=2x\left(x+2y\right)-x+4-2y\)

a) Thay \(x=-1;y=2\) vào biểu thức trên, ta có :

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]-\left(-1\right)+4-2.2\)

\(A=\left(-2\right)+3+1+4-4=\left(-2\right)+4=2\)

b) Xét 2 trường hợp của \(|y|=3:y=3;y=-3\) và thay x = 1 vào các biểu thức

Có TH1 : \(A=2.1\left(1+2.3\right)-1+4-2.1=12-1+4=15\). TH2 :

 \(A=2.1\left[1+2\left(-3\right)\right]-1+4-2.\left(-3\right)=\left(-10\right)-1+4-\left(-6\right)=-1\)

c) Thay \(x=-2y\) vào biểu thức, ta có : \(A=2x\left[\left(-2y\right)+2y\right]-x+4+x\)

\(A=2x.0+\left(x-x\right)+4=0+0+4=4\)

Ôí chồi chồi chồi ! 

\(A=2\left(-1\right)\left[\left(-1\right)+2.2\right]....\)

''....'' lak vế sau 

Cậu giỏi ghê, bên trên lak nhân DẤU nhân đấy.

a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3

x/3 = 3 suy ra x=9         ;        y/2 = 3 suy ra y=6         ;           z/5 = 3 suy ra z=15

 Vậy x=3 ; y=6 ; z=15

b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3)           ;             y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35

x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1

x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35

  Vậy x=6 ; y=15 ; z= 35

10 tháng 1 2016

\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5

Áp dụng tính chất DTSBN ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)

x/1/2 = -30 => x = -15

y/1/3 = -30 => y = -10

z/1/5 = -30 => z = -6

TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)

x/1/2 = 30 => x = 15

y/1/3 = 30 => y = 10

z/1/5 = 30 => z=  6

 

10 tháng 1 2016

a,

2x=3y=5z

=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

mà l x-2y l =5

=>x-2y=5 hoặc x-2y=-5

nếu x-2y=5

=>x/15=2y/20=x-2y/15-20=5/-5=-1

=>x=-15

=>y=-10

=>z=-6

nếu x-2y=-5

=>x/15=2y/20=x-2y=-5/-5=1

=>x=15

=>y=10

=>z=6

còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm  ! đăng câu khác mik làm tiếp cho !

12 tháng 11 2018

P=x3+x2y-2x2-y(x+y)+3y+x+2018

P=x2.(x+y-2)-y.(x+y)+3y+x+2018

Thay x+y=2 vào P ta có :

P=x2.(2-2)-2y+3y+x+2018

P=0.x2+y+x+2018

P=0+2+2018(x+y=2)

P=2020 

Vậy với x+y=2 thì P=2020

Mik tham khảo thêm ở bài bạn này nha https://olm.vn/hoi-dap/detail/102286367829.html