K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

Ta có : 20x =15y =12z

\(=>\frac{20x}{60}=\frac{15y}{60}=\frac{12z}{60}\)(dạng này thì bạn tìm bội chung nhỏ nhất của mấy số 20,15,12 rồi lấy làm mẫu chung như vầy để rút gọn cho còn x,y,z là đc nha)

\(=>\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2y}{8}=\frac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2y}{8}=\frac{3z}{15}=\frac{x+2y+3z}{3+8+15}=\frac{130}{26}=5\)

\(=>\hept{\begin{cases}x=5.3=15\\y=5.4=20\\z=5.5=25\end{cases}}\)

23 tháng 7 2019

20x = 15y = 12z => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

áp dụng t/c dãy tỉ số bằng nhau:

\(\frac{x+2y+3z}{3+4.2+5.3}=\frac{130}{26}=5\)

=> x=15, y=20, z=25

23 tháng 7 2019

\(4x=3y\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow x=3k;y=4k\)

Ta có:\(3k+8k=33\)

\(\Rightarrow11k=33\)

\(\Rightarrow k=3\)

Thay vào mà tính

13 tháng 5 2017

20x = 15y = 12z

\(\frac{20x}{60}=\frac{15y}{60}=\frac{12z}{60}\)

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Thay x , y , z vào biểu thức đề cho , ta có :

2x2 + 2y2 - 3z2 = -100

2.(3k)2 + 2.(4k)2 - 3.(5k)2 = -100

2.9k2 + 2.16k2 - 3.25k2 = -100

18k2 + 32k2 - 75k2 = -100

(18 + 32 - 75)k2 = -100

-25k2 = -100

k2 = 4

\(\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với k = 2

\(\Rightarrow\hept{\begin{cases}x=3k=3.2=6\\y=4k=4.2=8\\z=5k=5.2=10\end{cases}}\)

Với k = -2

(tương tự như k = 2)

10 tháng 1 2016

x/3=y/4=z/5 =>2x2/18=2y2/32=3z2/75=(2x2+2y2-3z2)/(18+32-75)

=-100/-25=4

Vậy x=6 hoặc x=-6;y=8 hoặc y=-8; z=10 hoặc z=-10 

10 tháng 1 2016

\(2x=3y=5z=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

|x - 2y| = 5 => x - 2y = 5 hoặc x - 2y = -5

Áp dụng tính chất DTSBN ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=\frac{5}{-\frac{1}{6}}=-30\)

x/1/2 = -30 => x = -15

y/1/3 = -30 => y = -10

z/1/5 = -30 => z = -6

TH2: Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x-2y}{\frac{1}{2}-\frac{2}{3}}=-\frac{5}{-\frac{1}{6}}=30\)

x/1/2 = 30 => x = 15

y/1/3 = 30 => y = 10

z/1/5 = 30 => z=  6

 

10 tháng 1 2016

a,

2x=3y=5z

=>\(\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}=>\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)=>\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

mà l x-2y l =5

=>x-2y=5 hoặc x-2y=-5

nếu x-2y=5

=>x/15=2y/20=x-2y/15-20=5/-5=-1

=>x=-15

=>y=-10

=>z=-6

nếu x-2y=-5

=>x/15=2y/20=x-2y=-5/-5=1

=>x=15

=>y=10

=>z=6

còn b/c bạn đăng từng bài 1 nhé làm thế này lâu lắm  ! đăng câu khác mik làm tiếp cho !

20 tháng 8 2019

a) xlđ

b) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{12}=\frac{x+2y-3z}{2+6-12}=\frac{-20}{-4}=5\)

=> \(\hept{\begin{cases}\frac{x}{2}=5\\\frac{y}{3}=5\\\frac{z}{4}=5\end{cases}}\)  =>   \(\hept{\begin{cases}x=5.2=10\\y=5.3=15\\z=5.4=20\end{cases}}\)

Vậy ...

c) tt

13 tháng 11 2018

Ta có : \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{x-1}{2}=\frac{2\left(y-2\right)}{2.3}=\frac{4\left(z-3\right)}{4.3}\)

 \(=\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)

\(=\frac{x-1-2y+4+3z-9}{8}=\frac{\left(x-2y+3z\right)-\left(1-4+9\right)}{8}=\frac{14-6}{8}=\frac{8}{8}=1\)

\(\Rightarrow x=1.2+1=3\)

     \(y=1.3+2=5\)

    \(z=1.4+3=7\)

Vậy x=3, y=5, z=7

20 tháng 9 2019

phần 1 ghi ko rõ

20 tháng 9 2019

2) Vì \(\frac{x}{y}=\frac{5}{7}\Rightarrow\frac{x}{5}=\frac{y}{7}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{x}{5}=\frac{y}{7}=\frac{x-y}{5-7}=\frac{7}{-2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{-7}{2}.5=\frac{-35}{2}\\y=\frac{-7}{2}.7=\frac{-1}{2}\end{cases}}\)

Vậy ..

11 tháng 2 2019

a) \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) (1)

     \(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1);(2) suy ra: \(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Theo đề: \(\left|x-2y\right|=5\)

\(\Rightarrow x-2y=5\) (nếu \(x-2y\ge0\Leftrightarrow x\ge2y\) )

    \(x-2y=-5\) (nếu \(x< 2y\) )

Vậy có hai trường hợp

TH1: Nếu \(x\ge2y\) suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{5}{-5}=-1\)

\(\Rightarrow\hept{\begin{cases}x=15.\left(-1\right)=-15\\y=10.\left(-1\right)=-10\\z=6.\left(-1\right)=-6\end{cases}}\) (nhận)

TH2: Nếu x < 2y suy ra: \(\frac{x}{15}=\frac{y}{10}\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\hept{\begin{cases}x=15.1=15\\y=10.1=10\\z=6.1=6\end{cases}}\) (nhận)

b) \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\) (1)

    \(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\) (2)

Từ (1);(2) => \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}\Rightarrow xy=6k.15k=90k^2=90\Rightarrow k^2=1\Rightarrow k=\left\{-1;1\right\}}\)

\(\Rightarrow\hept{\begin{cases}x=6.1=6\\y=15.1=15\\z=10.1=10\end{cases}}\) hoặc \(\hept{\begin{cases}x=6.\left(-1\right)=-6\\y=15.\left(-1\right)=-15\\z=10.\left(-1\right)=-10\end{cases}}\)

11 tháng 2 2019

c) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\frac{y+z+1+x+z+2+x+y-3}{x+y+z}\)

\(\frac{2x+2y+2z}{x+y+z}\)

\(\frac{2\left(x+y+z\right)}{x+y+z}=2\)

=> \(\frac{1}{x+y+z}=2\) => x + y + z = 1/2

=> \(\frac{y+z+1}{x}=2\) => y + z + 1 = 2x 

                                       => y + z + x + 1 = 3x

                                       => 1/2 + 1 = 3x

                                      => 3/2 = 3x

                                      => x = 3/2 : 3 = 1/2

=> \(\frac{x+z+2}{y}=2\) => x + z + 2 = 2y

                                        => x + z + y + 2 = 3y

                                        => 1/2 + 2 = 3y

                                       => 5/2 = 3y

                                       => y = 5/2 : 3 = 5/6

=> \(\frac{x+y-3}{z}=2\)=> x + y - 3 = 2z

                                         => x + y + z - 3 = 3z

                                          => 1/2 - 3 = 3z

                                        => 3z = -5/2

                                         => z = -5/2 : 3 = -5/6

Vậy ...