![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ đẳng thức : (x+y):(5-z):(y+z):(9+y)=3:1:2:5
=> \(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=\frac{5-z+y+z-9-y}{1+2-5}=\frac{-4}{-2}=2\)
=> x + y = 6 (1) ; z = 3 (2) ; y + z = 4 (3) và y = 1(4)
=> x = 6 - 1 = 5
Vậy x = 5 ; y = 1 ; z = 3
![](https://rs.olm.vn/images/avt/0.png?1311)
Answer:
\(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(9+y\right)=3:1:2:5\)
\(\Rightarrow\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x+y}{3}=\frac{5-z}{1}=\frac{y+z}{2}=\frac{9+y}{5}=\frac{x+y+5-z+y+z-9-y}{3+1+2-5}=x+y-4\)
\(\Rightarrow\hept{\begin{cases}\frac{x+y}{3}=y+y-4\\\frac{5-z}{1}=x+y-4\\\frac{9+y}{5}=x+y-4\end{cases}}\Rightarrow\hept{\begin{cases}x+y=3x+3y-12\\5-z=x+y-4\\9+y=5x+5y-20\end{cases}}\Rightarrow\hept{\begin{cases}2x+2y=12\\x+y+z=9\\5x+4y=29\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=1\\z=3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )