Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đúng đề:
\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)
\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)
\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16
\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
x/2=2=>4
y/3=2=>6
z/4=2=>8
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
x/5=6=>30
y/6=6=>36
z/7=6=>42
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\) =>x=6.5=30;y=6.6=36;z=6.7=42
a; \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\) = \(\dfrac{x+y-z}{2+3-4}\) = \(\dfrac{5}{1}=5\)
\(x=5.2\) = 10; y = 3.5 = 15; z = 4.5 = 20
mik ko bít
I don't now
................................
.............
b, ta có : x/3 = y/5 -> x/6 = y/10 ; y/2 = z/4 -> y/10 = z/20 . suy ra : x/6 = y/10 = z/20
áp dụng dãy tỉ số bằng nhau ta có : x/6 = y/10 = z/20 = 2x + y - z / 12 + 10 - 20 = 16 / 2 = 8
suy ra : x/6 = 8 -> x = 48
y = 80
z = 160
a, \(\frac{x}{y+z+1}=\frac{y}{x+z+3}=\frac{z}{x+y-4}=\frac{x+y+z}{y+z+1+x+z+3+x+y-4}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>\(x+y+z=\frac{1}{2};\frac{x}{y+z+1}=\frac{1}{2};\frac{y}{x+z+3}=\frac{1}{2};\frac{z}{x+y-4}=\frac{1}{2}\)
=>\(\hept{\begin{cases}y+z+1=2x\\x+z+3=2y\\x+y-4=2z\end{cases}}\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+3=3y\\x+y+z-4=3z\end{cases}\Rightarrow\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+3\\3z=\frac{1}{2}-4\end{cases}}}\Rightarrow\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{7}{2}\\3z=\frac{-7}{2}\end{cases}}\)
đến đây dễ rồi
b, =>(x-18)(x+16)=(x+4)(x-17)
=>x2+16x-18x-288=x2-17x+4x-68
=>x2-2x-288-x2+13x+68=0
=>11x-220=0
=>11x=220
=>x=20
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
=> \(\hept{\begin{cases}\frac{x}{2}=9\\\frac{y}{4}=9\\\frac{z}{-4}=9\end{cases}}\) => \(\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Vậy ...
a, ÁP DỤNG DÃY TỈ SỐ BĂNG NHAU TA CÓ
\(\frac{x}{2}=\frac{y}{3}=\frac{x}{-4}=\frac{x-y-z}{2-3+4}=\frac{27}{3}=9\)
\(\Rightarrow\hept{\begin{cases}x=9.2=18\\y=9.3=27\\z=9.\left(-4\right)=-36\end{cases}}\)
Tìm cac số x;y;z biết rằng:\(\frac{x-y}{10}=\frac{y+x}{5};\frac{x+y}{7}=\frac{y-z}{8}\) và x-2y+z=36
Theo t/c tỉ dãy số bằng nhau ,ta có: \(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}\)
\(=\frac{\left(x+y+z\right)-\left(5+4+3\right)}{3+4+5}=\frac{36-12}{12}=2\) (*)
Từ (*) ta có: \(\hept{\begin{cases}\frac{x-5}{3}=2\Leftrightarrow x=11\\\frac{y-4}{4}=2\Leftrightarrow y=12\\\frac{z-3}{5}=2\Leftrightarrow z=13\end{cases}}\)
Vậy ...
ADTCDTSBN
có: \(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{\left(x+y+z\right)-\left(5+4+3\right)}{3+4+5}.\)
\(=\frac{36-12}{12}=\frac{24}{12}=2\)
\(\Rightarrow\frac{x-5}{3}=2\Rightarrow x-5=6\Rightarrow x=11\)
...
bn tự làm tiếp nha
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{-16}=\frac{z}{17}=\frac{x+y+z}{5+-16+17}=\frac{36}{6}=6\)
\(\frac{x}{5}=6\Rightarrow x=30\)
\(\frac{y}{-16}=6\Rightarrow y=-96\)
\(\frac{z}{17}=6\Rightarrow z=102\)
Ta có : \(\frac{x}{5}=\frac{y}{-16}=\frac{z}{17};x+y+z=36\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{5}=\frac{y}{-16}=\frac{z}{17};\frac{x+y+z}{5+-16+17}=\frac{36}{6}=6\)
\(\Leftrightarrow\frac{x}{5}=6\Rightarrow x=30\)
\(\Leftrightarrow\frac{y}{-16}=6\Rightarrow y=-96\)
\(\Leftrightarrow\frac{z}{17}=6\Rightarrow z=102\)
Vậy x = 30 ; y = -96 ; z = 102