Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a\(\left(x-3\right)^2-\left(x+2\right)^2-5\left(\frac{1}{5}-7\right)=-30\)
=>(x-3-x-2)(x-3+x+2)-x+35=-30
=>-5(2x-1)-x+35=-30
=>-10x+5-x+35=-30
=>-11x+40=-30
=>-11x=-70 =>x=70/11
d)\(\left(x+3\right)^2-\left(x+5\right)\left(x-5\right)=2\)
\(=>\left(x+3\right)^2-x^2+25=2\)
\(=>\left(z+3-z\right)\left(z+3+z\right)+25=2\)
\(=>3\left(2z+3\right)+25-2=0\)
\(=>6z+9+23=0\)
\(=>6x+32=0=>6x=-32=>x=-\frac{16}{3}\)
e)\(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)
\(=>3\left(x^2+4x+4\right)+\left(4x^2-4x+1\right)-7\left(x^2-9\right)=36\)
\(=>3x^2+12x+12+4x^2-4x+1-7x^2+63\)
\(=>8x+76=36=>8x=36-76=>x=-40\div8=-5\)
g)\(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=5\)
\(=>x^3-1-x\left(x^2-4\right)=5=>x^3-1-x^3+4x=5\)
\(=>4x-1=5=>4x=6=>x=\frac{3}{2}\)
1)5(x^2-1)+x(1-5x)= x-2
<=>5x2-5+x-5x2=x-2
<=>-5+x=x-2
<=>x-x=-2+5
<=>0x=3(vô lí)
vậy ko tìm được x
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
c)\(x^3+3xy+y^3\)
\(=x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=\left(x^2-xy+y^2\right)+3xy\)
\(=x^2-xy+y^2+3xy\)
\(=x^2+2xy+y^2=\left(x+y\right)^2\)
\(=1^2=1\)
Đề câu g có vấn đề aa :>>>
Câu còn lại tương tự như trên mà
\(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}\)
\(\dfrac{z}{5}=\dfrac{z^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^2+y^2}{9+16}=\dfrac{x^2+y^2}{25}=\dfrac{225}{25}=9\)
\(\Rightarrow x=\sqrt{9\cdot9}=9\)
\(\Rightarrow y=\sqrt{9\cdot16}=12\)
\(\Rightarrow z=\sqrt{9\cdot25}=15\)
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
\(\Rightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{225}{25}=9\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9.9=81\\y^2=16.9=144\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=9\\y=12\end{matrix}\right.\)
\(\Rightarrow z=\dfrac{9}{3}.5=15\)
Vậy \(\left\{{}\begin{matrix}x=9\\y=12\\z=15\end{matrix}\right.\) thỏa đề bài