Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x(x+y+z)+y(x+y+z)+z(x+y+z)=-5+9+5=9
(x+y+z)^2=9
x+y+z=3 hoặc x+y+z=-3
x(x+y+z)=x.3=-5 =>x=-5/3
Với x+y+z=-3 ta có x=5/3
Tương tự ta cũng có y=3 hoặc y=-3, z=5/3 hoặc z=-5/3
ta có 2xy + x + y = 21
=> 4xy + 2x + 2y = 42
=> (4xy + 2x) + 2y = 42
=> 2x(2y+1) + 2y + 1 = 43
=> (2x + 1)(2y+1) = 43
\(\Rightarrow\hept{\begin{cases}2x+1\in\left\{1;43;-43;-1\right\}\\2y+1\in\left\{43;1;-1;-43\right\}\end{cases}}\Rightarrow\hept{\begin{cases}x\in\left\{0;21;-22;-1\right\}\\y\in\left\{21;0;-1;-22\right\}\end{cases}}\)
nhanh nhe! Minh chuan bi thi roi
Ai nhanh ma dung, minh se k cho!
\(x-y+2xy=7\)
\(\Rightarrow x\left(2y+1\right)-y=7\)
\(\Rightarrow x\left(2y+1\right)=7+y\)
\(\Rightarrow2x.\left(2y+1\right)=2\left(7+y\right)\)
\(\Rightarrow2x\left(2y+1\right)=14+2y\)
\(\Rightarrow2x\left(2y+1\right)-\left(2y+1\right)=\left(14+2y\right)-\left(2y+1\right)\)
\(\Rightarrow\left(2x-1\right)\left(2y+1\right)=13\)
\(TH1:\hept{\begin{cases}2x-1=-1\\2y+1=-13\end{cases}}\Rightarrow\hept{\begin{cases}2x=0\\2y=-14\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-7\end{cases}}\)
\(TH2:\hept{\begin{cases}2x-1=-13\\2y+1=-1\end{cases}}\Rightarrow\hept{\begin{cases}2x=-12\\2y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-6\\y=-1\end{cases}}\)
\(TH3:\hept{\begin{cases}2x-1=1\\2y+1=13\end{cases}}\Rightarrow\hept{\begin{cases}2x=2\\2y=12\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)
\(TH4:\hept{\begin{cases}2x-1=13\\2y+1=1\end{cases}}\Rightarrow\hept{\begin{cases}2x=14\\2y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\y=0\end{cases}}\)
Vậy các cặp giá trị \(\left(x;y\right)\)thoả mãn là: \(\left(0;-7\right)\), \(\left(-6;-1\right)\), \(\left(1;6\right)\), \(\left(7;0\right)\)
\(4x=2y\Rightarrow2x=y\Rightarrow\frac{x}{1}=\frac{y}{2};7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{5}=\frac{y}{10}=\frac{z}{14}=\frac{x-y+z}{5-10+14}=-\frac{46}{9}\)
\(x=5.\frac{-46}{9}=-\frac{230}{9}\)
\(y=10.\frac{-46}{9}=-\frac{460}{9}\)
\(z=14.\frac{-46}{9}=-\frac{644}{9}\)