Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
;
cân bằng phương trình bằng cách nhân x vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân y vào cả hai vế ta có:
cân bằng phương trình bằng cách nhân z vào cả hai vế ta có:
vì
Vì Có cùng số mũ và bằng nhau
Nên các cơ số cũng bằng nhau
Ta có: \(x^2=y\cdot z\)
nên \(z=\dfrac{x^2}{y}\)(1)
Ta có: \(y^2=z\cdot x\)
nên \(z=\dfrac{y^2}{x}\)(2)
Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)
\(\Leftrightarrow x^3=y^3\)
hay x=y(3)
Ta có: \(x^2=y\cdot z\)
nên \(y=\dfrac{x^2}{z}\)(4)
Ta có: \(z^2=x\cdot y\)
nên \(y=\dfrac{z^2}{x}\)(5)
Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)
\(\Leftrightarrow x^3=z^3\)
hay x=z(6)
Từ (3) và (6) suy ra x=y=z(đpcm)
Gọi số máy cày đội 1 là a ; số máy cày đội 2 là b ; số máy cày đội 3 là c \(\left(a;b;c\inℕ^∗\right)\)
Ta có a + b + c = 39
Vì số máy cày và số ngày làm là 2 đại lượng tỉ lệ nghịch
=> 2a = 3b = 4c
=> \(\frac{2a}{12}=\frac{3b}{12}=\frac{4c}{12}\)
=> \(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b+c}{6+4+3}=\frac{39}{13}=3\)
=> \(\hept{\begin{cases}a=18\\b=12\\c=9\end{cases}}\)(t/m)
Vậy số máy cày đội 1 là 18 máy ; số máy cày đội 2 là 12 máy ; số máy cày đội 3 là 9 máy
\(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)
=> 7(x2 + y2) = 10(x2 - 2y2)
=> 7x2 + 7y2 = 10x2 - 20y2
=> 3x2 = 27y2
=> x2 = 9y2
=> x2 = (3y)2
=> \(\orbr{\begin{cases}x=3y\\x=-3y\end{cases}}\)
Khi x = 3y
=> x4y4 = 81
<=> (xy)4 = 81
<=> (xy)4 = 34
<=> \(\orbr{\begin{cases}xy=3\\xy=-3\end{cases}}\Rightarrow\orbr{\begin{cases}3y.y=3\\3y.y=-3\end{cases}}\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=-1\left(\text{loại}\right)\end{cases}}\Rightarrow y=\pm1\)
Khi y = 1 => x = 3
Khi y = -1 => x = -3
Khi x = -3y
=> (xy)4 = 34
=> \(\orbr{\begin{cases}xy=3\\xy=-3\end{cases}}\Rightarrow\orbr{\begin{cases}-3y^2=3\\-3y^2=-3\end{cases}}\Rightarrow\orbr{\begin{cases}y^2=-1\left(\text{loại}\right)\\y^2=1\end{cases}}\Rightarrow y=\pm1\)
y = 1 => x = -3
y = -1 => x = 3
Vậy các cặp (x;y) thỏa mãn là (3;1) ; (-3;-1) ; (3;-1) ; (-3 ; 1)
Ta có : \(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\Rightarrow1:\frac{3}{x-1}=1:\frac{4}{y-2}=1:\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Đặt \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=k\Rightarrow\hept{\begin{cases}x=3k+1\\y=4k+2\\z=5k+3\end{cases}}\)
Khi đó x + y + z = 18
<=> 3k + 1 + 4k + 2 + 5k + 3 = 18
=> 12k + 6 = 18
=> 12k = 12
=> k = 1
=> x = 4 ; y = 6 ; z = 8
Bài giải
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}=\frac{3+4+5}{x-1+y-2+z-3}=\frac{12}{12}=1\)
\(\Rightarrow\text{ }\hept{\begin{cases}x=3\text{ : }1+1=4\\y=4\text{ : }1+2=6\\z=5\text{ : }1+3=8\end{cases}}\)
\(\Rightarrow\text{ }x=4\text{ ; }y=6\text{ ; }z=8\)
Ta có: \(x^{1890};y^{2020}>0\) với mọi x; y khác 0
a) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) dương với mọi x ; y khác 0
khi \(19t+\frac{5}{t}>0\)
<=> \(\frac{19t^2+5}{t}>0\)
<=> t > 0
vì 19t^2 + 5 > 0 với mọi t
b) \(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\) âm với mọi x ; y khác 0
khi \(19t+\frac{5}{t}< 0\)
<=> \(\frac{19t^2+5}{t}< 0\)
<=> t < 0
vì 19t^2 + 5 > 0 với mọi t
Đkxđ : t > 0
\(\left(19t+\frac{5}{t}\right)x^{1890}y^{2020}\)
a) Ta có : \(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức dương => \(19t+\frac{5}{t}>0\)
=> t > 0
=> t thuộc N*
b) Ta có :\(x^{1890}\ge0\forall x\); \(y^{2020}\ge0\forall y\)
Để đơn thức âm => \(19t+\frac{5}{t}< 0\)
=> t < 0
=> t thuộc Z
t 27 tháng 7 2017 lúc 13:57
2x/3 =3y/4 =4z/5 ⇒60.2x/3 =60.3y/4 =60.4z/5 ⇒40.x=45.y=48.z
40.x = 45.y => x/45 = y/40 => x/9 = y/8 => x/18=y/16 [1]
45.y = 48.z => y/48 = z/45 => y/16 = z/15 [2]
Từ [1] và [2] => x/18 = y/16 = z/15 = [x+y+z]/[18+16+15] = 49/49 = 1
=> x= 18 ; y= 16 ; z= 15
Vậy x= 18 ; y= 16 ; z= 15
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+0.4\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)
Áp dụng tc dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{x\cdot y}{2\cdot3}=\dfrac{96}{6}=16\)
\(\Rightarrow\left\{{}\begin{matrix}x=32\\x=48\end{matrix}\right.\)
Tham khảo!