Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tứ giác CDPQ có hai góc vuông và hai cạnh CD = DP = 4 nên nó là hình vuông. Suy ra: CD = DP = PQ = QC = 4
Trong tam giác vuông BCQ, ta có:
≈ 6,223.sin 50 ° = 4,767
Trong tam giác vuông ADP, ta có:
AP = DP.cotgA = 4.cotg 70 ° ≈ 1,456
Ta có: y = AB = AP + PQ + QB = 1,456 + 4 + 4,767 = 10,223
\(x+y=2\Rightarrow y=2-x\)
\(xy=x.\left(2-x\right)=2x-x^2=-\left(x^2-2x\right)\)
\(=-\left(x^2-2x+1-1\right)=-\left(x-1\right)^2+1=1-\left(x-1\right)^2\le1\)
=> đpcm
( Dấu "=" xảy ra <=> x = 1 => y = 2 - x = 2 - 1 = 1 )
a: Thay x=1 và y=2 vào (d), ta được:
\(m+1-2m+3=2\)
\(\Leftrightarrow4-m=2\)
hay m=2
\(a,\) \(\left(d\right)\) đi qua \(A\left(1;2\right)\Leftrightarrow x=1;y=2\)
\(\Leftrightarrow2=m+1-2m+3\Leftrightarrow m=2\)
\(b,m=2\Leftrightarrow\left(d\right):y=3x-2\cdot2+3=3x-1\)
\(y=2\Leftrightarrow x=1\Leftrightarrow A\left(1;2\right)\\ y=5\Leftrightarrow x=2\Leftrightarrow B\left(2;5\right)\)