Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\frac{x}{2}=\frac{y}{5}\Leftrightarrow\frac{x}{6}=\frac{y}{15}\)
\(\frac{y}{3}=\frac{z}{2}\Leftrightarrow\frac{y}{15}=\frac{z}{10}\)
=> \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=\frac{x+y+z}{6+15+10}=-\frac{12}{31}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{72}{31}\\y=-\frac{180}{31}\\z=-\frac{120}{31}\end{cases}}\)
b) \(2x=3y=5z\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x-y+z}{15-10+6}=\frac{33}{11}=3\)
=> \(\hept{\begin{cases}x=45\\y=30\\z=18\end{cases}}\)
Một lớp 5A có số học sinh nam bằng 37 số học sinh cả lớp. Nếu chuyển 2 học sinh nữ sang lớp khác thì lúc này số học sinh nam bằng 920 học sinh cả lớp. Tính số học sinh nam, học sinh nữ của lớp 5A.
Giải rõ nhé
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
mình làm câu b nhé
2x-2/4=3y-6/9=z-3/4
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có:
=2x-2+3y-6-z-3/4+9-5
=(2x+3y-z)-(2+6-3)/9
=50-5/9=45/9=5
mình gợi ý tới đây thui , còn lại bạn làm tiếp nhé
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
a, y2 = 3 - |2x - 3|
=> y2 + |2x - 3| = 3
Mà y2 > hoặc = 0
|2x - 3| > hoặc = 0
Do đó: {y2; |2x - 3|} thuộc {(1; 2); (2; 1); (0; 3); (3; 0)}
Mà x thuộc Z => 2x - 3 là số lẻ => |2x - 3| là số lẻ
=> |2x - 3| thuộc {1; 3}
+ |2x - 3| = 1
=> y2 = 2 (vô lí vì y thuộc Z)
+ |2x - 3| = 3
=> y2 = 1`
=> 2x - 3 thuộc {3; -3}
và y thuộc {1; -1}
=> x thuộc {3; 0}
và y thuộc {1; -1}
b, Phần b tương tự mà làm thôi
thanks bn nha